Final Test
Motion and Manipulation

November 8, 2019
17:00-19:30

Note: It is not allowed to use pocket calculators or consult books, notes. slides. etc. Fill out
your name and student number on each page you hand in. The test consists of nine exercises.
Motivate all your answers!

1: Kinematics I (0.5 + 1.0)

We are given a fixed orthonormal frame F = {f!, 2, f3} and a mobile orthornormal frame
M = {m!, m? m3}. Initially the frames M and F coincide. We rotate M by 7/2 radians about
f2 and then by /2 radians about f1.

(a.) Determine the transformation matrix that maps mobile M coordinates into fixed F coordi-
nates.

(b.) The above composition of two rotations is equivalent to a single rotation. Determine the
axis and the angle of this rotation.

2: Kinematics IT (0.5 + 1.0)

(a.) Compute the Hamiltonian product (1 + 2i + 35)(3 +2j + k) and simplify the result as much
as possible.

(b.) Use quaternions to determine the image of the point p = (0,4,0) after a rotation by an angle
of 7/2 about the line through the origin with direction vector (1,0, nT.

3: Kinematics for Linkages (1.0)

Consider the four-axis robot on the separate sheet and the frames assigned to its axes of motion
and its hand. Use the given frames to determine the joint angle 6;, the joint distance d;, the link
length a;, and the link twist angle a; for each of the axes i = 1,2,3, 4. Clearly indicate which
parameters are variable.

4: Inverse Kinematics (1.0)

We consider a two-link arm in two-dimensional Euclidean space with two rotational degrees of
freedom. It consists of a long link of length 4 and a short link of length 3 that share a common
endpoint that acts as a rotational joint. The other endpoint of the long link is anchored at the
origin about which the link can rotate. The free endpoint of the short link is the tip of our arm.
Joint angle 6; denotes the (counterclockwise) angle between the positive z-axis and the long link,
and joint angle 05 denotes the (counterclockwise) angle between the extension of the long link and
the short link.

The goal is to determine values for 6; and , that place the tip at (5, 5). We consider the use
of the Cyclic Coordinate Descent method to this inverse kinematics problem. We start from the
initial configuration 6; = 0 and #5 = 0 in which the arm is stretched and aligns with the positive
z-axis. Perform one iteration of the method through both joints (in the appropriate order). What
are the coordinates of the tip after the first rotation of a joint, and what are the coordinates of
the tip after the second rotation of a joint?



5: Short Questions (0.5 + 0.5)

(a.) Determine the configuration space for a system of two polyhedral entities A; and A; moving
independently in a three-dimensional Euclidean workspace, where A; moves while one of its
vertices is confined to the plane z = 0 and A, moves while one of its facets slides on the
plane z = 0.

(b.) What is the difference between open-loop control and closed-loop control?

6: Minkowski Sums (0.5 + 0.5)

(a.) Let I be the segment with endpoints (1,0) and (1,4). Let s be the line segment with
endpoints (-2, —1) and (2,1) and ¢ be the line segment with endpoints (-2, 1) and (2, —1).
Define X = sUt. Construct the (non-convex) Minkowski sum I & X and list its vertices.

(b.) Let R = {(z,y) |2 +y*-9 < 0}n{(z,y) | —2%>—y*>+4 < 0} and D = {(x,y) | 22 +y2—1 < 0}.
Construct the Minkowski sum R & D.

7: Pliicker Coordinates (1.0)

Let ¢ be the line through the points (2,0, —1) and (—1,1, —3). What is the distance between
the line ¢ and the origin O?

8: Form Closure Grasps (1.0)

(a.) Let p1 = (0,1), p2 = (0,3), p3 = (=2,3), ps = (=2,-1), ps = (0,-1), ps = (0,—3),
pr = (2,-3), and ps = (2,1). Let P be the non-convex object bounded by the edges
P1P2. P2P3. P3P4s PaPss Ps5Pe. PeP7. P7Ps, and pgp;. Use Reuleaux’ half-plane analysis of
instantaneous velocity centers to check whether frictionless point fingers at p; and ps put P
in form closure.

(b)) Let g1 = (1.1), @2 = (1,3), ¢3 = (-2,3), @1 = (=2,-1), g5 = (-1.-1), g5 = (-1,-3),
g7 = (2,-3). and ¢gs = (2,1). Let @ be the non-convex object bounded by the edges ¢1¢:.
4293, 9394 4495+ 4596 4697 G793, and gsq;. Use Reuleaux’ half-plane analysis of instantaneous
velocity centers to check whether frictionless point fingers at ¢; and g5 put @Q in form closure.

9: Force Closure Grasps (1.0)

We are given the square S with corners (1,1), (=1,1), (=1,—1), and (1, —1) and three points
p1 = (1,0), po = (0.1). and p; = (—1,0). Consider force-closure grasps involving frictionless
point fingers at pi, p2, p3. and any fourth point py along the boundary of S. Reason about the
corresponding wrenches to prove that no such four-finger grasp can yield force closure.



