
Exam Program Verification 2007/2008

UNNIK-211, 01-07-2008, 09:00-12:00

Lecturer: Wishnu Prasetya

June 30, 2008

1. [2.5 pt] Consider this Kripke structure K:

0 : {x>0} 1 : {x>0} 2 : {x>0, x=y}

The set of states of this automaton is {0, 1, 2}, with 0 as the initial state. The set Prop of
atomic observations is {x>0, x=y}. The labeling of every set with these observations are
as given in the above picture.

We are going to do LTL model checking to verify whether the above ’program’ satisfies the
property: true U (x=y).

(a) Draw a Buchi automaton B representing ¬(true U (x=y)).

(b) Give the formal definition of the Buchi automaton you draw in (a). That is, describe
it in terms of a tuple (Σ, Q, ρ, I, F ); what are your Σ in this case, your Q, your ρ and
so on.

(c) Construct the automaton K ∩ B. Explain why we need this automaton for model
checking your property.

(d) So, according to your K ∩ B, does your original program K satisfy the property
true U (x=y) ?

If yes, explain why. If no, give your counter example in terms of a path in K ∩ B.

(e) SPIN uses a nested DFS algorithm to find a counter example. Explain why a single
DFS is not sufficient.

2. [2.5 pt] Consider this Kripke structure K:

0 : {home} 1 : {page1}

2 : {page2, help}

3 : {page3, help}

The set of states of this automaton is {0, 1, 2, 3}, with 0 as the initial state. The set Prop

of atomic observations is:

{home, page1, page2, page3, help}

The labeling of every set with these observations are as given in the above picture.

1



(a) We want to express that when home is true, there exists a path leading to a state where
page3 is true. How to express this in CTL?

(b) Can we express the same thing in LTL? If yes, give the formula. If no, motivate why
not.

(c) We will do CTL model checking to check if the automaton K above satisfies the property
A[true U help]. The model checking algorithm proceeds by iteratively labeling the
states of K with formulas. Fill in the following tabel to reflect the first 4 iterations of
your model checking procedure:

Iteration State

0 1 2 3

0 {home} {page1} {page2, help} {page3, help}

1 {home} {page1} {page2, help, A[true U help]} {page3, help, A[true U help]}

2

3

(d) When should we terminate the iterations in the above model checking procedure?

(e) Does K satisfy A[true U help], according to your model checking? Explain.

3. [2.5 pt] Consider the two CSP processes given below. The alphabet of both is {a, b}.

P1 = (b → STOP ) 2 (a → a → P1)

P2 = (b → STOP ) u (a → a → P2)

(a) Describe the kind of traces that can be generated by P1 and P2. So, how are these
processes ralated to each other in terms of trace-based refinement?

(b) Give all failures of P1 respectively P2 whose traces are of length 2 or less. You can use
tables like the one below to list those failures.

E.g. for P1:

trace length failures
0 (〈〉, ∅), ...
1 (〈a〉, ∅), (〈a〉, {b}), (〈b〉, ∅), (〈b〉, {a}), (〈b〉, {b}), (〈b〉, {a, b})
2 ...

(c) Does P1 v P2 hold under the failures semantic? How about P2 v P1 ?

(d) Draw the automata M1 and M2 representing P1 and respectively P2. Label each state
of these automata with its refusals.

(e) Construct the automaton M1 ∩ M2, and explain how we can check P1 v P2 using
M1 ∩ M2. So, does P1 v P2 hold according to your refinement checking procedure?

2



4. [2.5 pt] Consider the following concepts:

”Abstractly, a program P can be seen as a function that maps an initial state to
a set of possible end-states. If P does not terminate when executed on an initial
state s, we will express this by mapping s to an empty state. That is, in our
abstract representation P s = ∅.

A program P always terminates if for all (intial) state s, P s is not empty. It
follows that if P and Q are two programs that always terminate, so does P ; Q.”

We want to express those concepts in HOL (to eventually prove the claimed theorem, though
we will not do so here).

(a) Give a HOL type that will be sufficient to represent the above abstract concept of
”program”, then give HOL definitions that capture the concepts ”P always terminate”
and ”P ; Q”.

(b) Write a formula capturing the theorem ”if P and Q are two programs that always
terminate, so does P ; Q”

(c) In HOL a goal has the following type:

type goal = (term list) ∗ term

and a tactic has the following type:

type tactic = goal → ((goal list) ∗ (thm list → thm))

So, when given a goal v, a tactic tac will produce a pair (z, f). Explain the roles of z

and f and their relations to v.

(d) Let’s now apply the above understanding. Write the combinator TRY that will behave
as follows. Given a tactic tac, TRY tac will apply tac on the given goal. If it succeeds,
then we are done. However if tac fails on the goal (that is, if it throws an exeception),
then we do nothing with the original goal (and throws no exception).

You can write TRY in ML, Haskell, or even in some pseudo imperative language.

3


