FACULTEIT NATUUR- EN STERRENKUNDE UNIVERSITEIT UTRECHT

FINAL EXAM Special Relativity 2010

- 1) Start every exercise on a separate sheet. Write on each sheet: your name and initials, and your studentnumber.
- 2) Please write legibly and clear. Unreadable handwriting cannot be marked!
- 3) The exam consists of three exercises, all of which count for 30%.
- 4) No lectures notes or any other material (books, calculators, ...) are allowed. A formularium instead is given.

Formularium

In this exam, we will always assume inertial observers O and O' with synchronized clocks. O' has a constant speed v, relative to O.

• The special Lorentz transformations are

$$x' = \gamma(x - vt) ; \qquad t' = \gamma(t - \frac{v}{c^2}x) , \qquad (1)$$

where

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} \;, \qquad \beta \equiv \frac{v}{c} \;. \tag{2}$$

• The energy and momentum of a particle with mass m and speed v are given by $E = mc^2\gamma$ and $p = mv\gamma$. For a massless particle, we have the relation E = pc.

1. Doppler's law from the Lorentz transformations

Use the special Lorentz transformations to derive the formula for the relativistic Doppler effect,

$$f' = \frac{f}{k(\beta)}$$
, $k(\beta) \equiv \sqrt{\frac{1+\beta}{1-\beta}}$, (3)

where f is the frequency of the light sent out by the source O, and f' is the frequency measured by the observer O' moving relative to the source with constant speed $v = \beta c$. The direction of the speed of O' is the same as the direction of propagation of the light. To derive Doppler's law, you may go through the following steps:

- a) Let the source O emit a light signal to O' at every time step t = T, 2T, ..., with frequency f = 1/T. Draw the spacetime diagram of O and indicate the events of emission and reception as points in the diagram.
- b) Determine the spacetime coordinates of the receiving events in the frame of O, in terms of T, v, and the speed of light c.
- c) Lorentz transform these coordinates to the frame of O' and determine from this the frequency f'. Show that your result reproduces Doppler's law (3).

2. A moving rod

A rod is directed along the x-axis and moves along this direction with constant speed v, relative to an observer O. The rest-length of the rod is $2L_0$, as measured in the rod's restframe O'. At t=0, the midpoint of the rod is located at x=0. Now consider a circular ring of (rest-)radius L_0 which, in the frame of O, moves with constant speed along the z-axis. The ring is always parallel to the (x,y)-plane and at t=0 the center of the ring is at the origin in the (x,y)-plane at z=0.

- a) What is the length of the rod as measured in the frame of O? Draw a picture of the rod and the ring in the (x, y)-plane at t = 0. Does the rod fit into the ring?
- b) Determine the time(s) at which the ring is crossing the x'-axis according to the observer in the restframe O'.
- c) Draw a picture of the situation of the rod and the ring, as seen from along the z'-axis, paying attention to the Lorentz contraction that O' measures. Describe what happens as seen by an observer in the rest-frame O'.

3. Pion decay

A neutral pion moves in the laboratory along the x-axis and decays into two photons (lightparticles). The energy E of the pion is twice its rest-energy E_0 , with $E_0 = 135$ MeV (Mega-electronVolt).

- a) What is the speed of the pion, relative to the speed of light?
- b) Compute the energy of the two photons, assuming that they are emitted along the x-axis in opposite directions.

[Hint: $\sqrt{3} \approx 1,73$.]