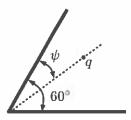
Electrodynamics Midterm Exam

Date: Friday, May 19th 2017

Duration: 2 hours
Total: 22 points

1. Use a separate sheet for every exercise.

- 2. Write your name and initials on all sheets, on the first sheet also your address and your student ID number.
- 3. Write clearly, unreadable work cannot be corrected.
- 4. You may use the book of Griffiths.
- 5. Distribute your time wisely between the exercises.

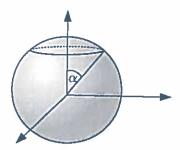

1. Potential of a charged sphere (5 points)

We consider a sphere of radius R centered at the origin. We assume that the sphere carries the charge density $\rho(r,\theta) = k\frac{R}{r^2}(R-2r)\sin\theta$, where k is a constant and r, θ are the usual spherical coordinates.

- a) Derive the total charge of the charge distribution. (2 points)
- b) Derive the dipole contribution of the approximate potential for points on the z-axis, far from the sphere. (2 points)
- c) One can show that the quadrupole contribution to the approximate potential is non-vanishing along the z-axis. On this axis, what is the power $1/r^n$ of the leading term that dominates the behaviour of the approximate potential far from the sphere? (1 point)

2. Image charges (7 points)

Consider a point charge q located at an arbitrary point P between two grounded conducting metal plates tilted at an angle of 60° as indicated in the figure.



a) Calculate the potential $V(\mathbf{r})$ in the space between the plates using the method of images. Sketch a figure that shows the required image charges. Discuss how the result depends on the angle ψ indicated in the figure. (4 points)

- b) How much work W did it take to bring in the charge q from infinity? (1 points)
- c) Can one use the method of images to determine the field outside of the two plates? Explain your answer. (1 point)
- d) What is the relation of the angle between the plates and the number of image charges? (1 point)

3. Charged sphere with a cap (10 points)

A hollow sphere of radius R admits a specified potential $V_0 = \frac{Q}{4\pi\epsilon_0 R}$ on the surface, except for a spherical cap at the north pole, defined by the cone $\theta = \alpha$. The spherical cap is grounded to vanishing potential $V_0 = 0$, $\theta < \alpha$. Here r, θ, ϕ are the usual spherical coordinates whose origin coincides with the center of the sphere.

a) Use Rodrigues' formula for the Legendre polynomials $P_n(x)$ to show (2 points)

$$(2l+1)P_l(x) = \frac{d}{dx} (P_{l+1}(x) - P_{l-1}(x)) . (1)$$

(Hint: You may continue to the next part even if you are unable to show (1).)

b) Use the separation of variables method, as discussed for a more general situation in the lecture, and equation (1) to show that the potential inside the sphere takes the form

$$V(r,\theta) = \frac{Q}{8\pi\epsilon_0} \sum_{l=0}^{\infty} \frac{r^l}{R^{l+1}} [P_{l+1}(\cos\alpha) - P_{l-1}(\cos\alpha))] P_l(\cos\theta) , \qquad (2)$$

where we have set $P_{-1}(x) = -1$. (3 points)

- c) Evaluate the above potential V for $\alpha = 0$ and interpret your answer. (2 points)
- d) Derive the electric field \mathbf{E} at the center of the sphere for general α . Into which Cartesian coordinate direction does the field \mathbf{E} point? (3 points)