Midterm exam in Electrodynamics

DR. THOMAS W. GRIMM PROF. THOMAS PEITZMANN Midterm exam 18.05.2018

DURATION: 3 hours TOTAL: 115 points

- 1. Use a separate sheet for every exercise.
- 2. Write your name and initials as well as your student ID number on all sheets.
- 3. A formula sheet is provided with the exam, you may not use any other formula sheets or books.
- 4. Write clearly, illegible work cannot be corrected.
- 5. Distribute your time wisely between the questions.

Question 1.

20 points

- a) Give a heuristic argument to why all the extrema of the solutions to Laplace's equation occur on the boundaries of the considered region.
 (Hint: You may assume the 'averaging property' shown in the lecture.) (3 points)
- b) State the first uniqueness theorem for the solutions to Laplace's equation. Prove this theorem. (7 points)
- c) Explain the separation of variables method for solving Laplace's equation. When is it sufficient to look for solutions of this form? (5 points)
- d) Is there a simple configuration of point charges with a vanishing total charge, yet non-vanishing electric field? How would you calculate the electric field of such a configuration? (5 points)

Question 2.

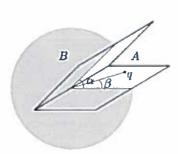
20 points

We observe a sphere of the radius R with the total charge Q and charge density

$$\rho(r) = \begin{cases} \alpha & \text{for } r \le R/2 \\ 2\alpha \left(1 - \frac{r}{R}\right) & \text{for } R/2 \le r \le R \\ 0 & \text{for } r \ge R \end{cases},$$

where $\alpha > 0$ is a constant.

- a) Determine α in terms of Q and R. (6 points)
- b) Calculate the electric field inside and outside the sphere. (14 points)


Question 3. 20 points

An infinite grounded conducting sheet is folded to form an angle of $\alpha=45^{\circ}$ in the xy-plane and we introduce a point charge in this region, see figure. The charge is at the unit distance from the origin and at an angle β with respect to the x-axis.

- a) Calculate the potential in the region A using the method of images. (9 points)
- b) Is the result from (a) valid for region B as well? Why/why not? Does the calculation from (a) work if the sheet is folded to form an angle of $\alpha = 50^{\circ}$? Why/why not? (2 points)

d) What is the work required to bring q from infinity to the given position? (5 points)

Question 4.

A box is assembled of square metal plates with sides a, 5 of which are grounded. The top one is made of a separate sheet of metal, insulated from the others, and held at a constant potential V_0 . Find the potential inside the box.

Question 5. 25 points

The potential at the surface of a sphere with radius R is given by

$$V(R, \theta, \phi) = V_0 \sin^4 \theta.$$

Find the potential inside and outside the sphere. Assume that there is no charge inside or outside the sphere.

Bonus: Question 6. 15 points

Show, in general, the following equality:

$$\frac{1}{2} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos \alpha),$$

where α is the angle between r and r', and $\alpha = r - r'$.