EXAM BLOCK 2 GEOPHYSICAL FLUID DYNAMICS
17 March 2010, 9.00 - 11.00 hours

Two problems (all items have equal weight)

Remark 1: answers may be written in English or Dutch.

Remark 2: in all questions you may use g = 10 ms ™%, a = 6400 km and 2 = 7.3x 10~5 g1

Problem 1
A fluid system is governed by the following equations:
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a. Name the set of these equations.
Also, describe the meaning of the symbols 3, ¢, a and H.

b. When focusing on flow that evolves on timescales of many days, the system above
can be reduced to a single equation for variable v, le.,
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which admits wave-like solutions of the form
v = SR{V(?J) 6i(k1~wt)} )
Derive the equation for V(y).

¢. The equation for V(y) found in item b has a solution
V=Voye><p(~%/ﬂy2), ugz\/%{,
with V5 a constant and the corresponding dispersion relation
— 0o k
TR
What kind of waves are described by this solution?
Also, give a physical interpretation of parameter f.

d. Compute the range of wavenumbers & for which the phase velocity and group
velocity of these waves are of opposite sign.

For problem 2: P.T.O.



Problem 2

Consider flow governed by

dq oy
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a. What principle is expressed by this equation?
b. Give a physical interpretation of the three terms that constitute variable q.

¢. Show that the equation above admits a solution that represents a steady, zonal
flow with an arbitrary vertical structure.

d. Assume a steady zonal flow in the atmosphere, which is governed by the equation
given above, and which has a constant vertical shear o = 1073 s
Compute the magnitude and direction of the thermal wind between vertical levels
2 =1 km and z =5 km.

e. Compute the density field that corresponds to the flow considered in item d.

END



GFD 2009 Equation sheet

Continuity and momentum equations: molecular viscous fluid
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Energy budget for adiabatic flow of fixed composition
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Relative circulation and relative vorticity
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where S is the surface enclosed by contour C'.

Shallow water equations
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Equatica sheek 2
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o Generalised equabien for barakrepic planebary waves/ topographia waves :
W - gl —B R, %l N =0
2 =R BRI+ L5 .
. Complex vorioble ! ¢;’¢‘et8 = e +ig; Where (¢12=¢r2+¢;?, ban 8 =3

———————

o Q6 Theory for conbinususly strokified Flurd :
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