FINAL EXAM GEOPHYSICAL FLUID DYNAMICS
2 November 2015, 9.00 - 11.00 (2 hours)

Two problems (all items have equal weight)

Remark I: answers may be written in English or Dutch.

Remark 2: in all questions you may use g = 10 ms~2, a = 6400 km and 2 = 7.3 x 1073 s~

Problem 1

Quasi-geostrophic flow in the atmosphere is governed by the equations
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with R = (¢'H)Y/2/| fo| and H the depth of the atmosphere.

a. Name the variables q;, ¢- and name the parameters R, fp and 5.
Also, describe the physical meaning of the differential equation for ¢; and the physical
meaning of the three terms that occur in the definition of g;.

b. It is convenient to derive and analyse equations for the two variables
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Show that the linearised equation for variable 1/ 5 reads
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c. Consider the equation for variable /5 that is given in item b.
Substitute wave-like solutions in this equation for 1z and derive the dispersion relation
of these waves.
What is the name of these waves?

d. Under certain conditions the two-layer quasi-gesotrophic model describes wave-like so-
lutions of which the amplitude grows exponentially in time.
What conditions are necessary to find such solutions?
Also, name the underlying physical mechanism and give a (rough) estimate of the zonal
wavelength of the fastest growing wave.

For problem 2: P.T.O.



Problem 2

Consider a two-layer ocean, of which the lower layer is infinitely thick. This ocean is bounded
by a coast at z = 0. Initially, the system is at rest and the depth of the upper layer has a
constant and spatially uniform value H. At time { = 0, a spatially uniform wind starts to blow
along the coast {see figure), which ceases al lime { = {_,

lighter

Initially

The dynamics are governed by the nonlinear shallow water equations
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where the wind stress is
o 7(t) foro<t<|,,
0 forl = 1,.
Below, the adjusted, steady end state of the system (attained for { — co) is analysed.

a. Show that the end state is characterised by u = 0.

b. Use the result of item a, as well as conservation of potential vorticity, to derive two
differential equations for v and /2 of the end state.
Present these equations and show that their solutions are
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where A is an integration constant.

c. Consider the case that outcropping of the lower layer occurs at x = d. This means that
in the region 0 < z < d dense, cold bottom water reaches the surface.
Express A in terms of d and other model parameters and sketch the interface of the
adjusted state.

d. An expression for distance d is found from integration of the longshore momentum
equation, yielding
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Give a physical interpretation of this result,

END



GFD 2015 Equation sheet

Continuity and momentum equations: molecular viscous fluid
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Relative circulation and relative vorticity
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where S is the surface enclosed by contour C.

Shallow water equations
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Ekman pump (Northern Hemisphere)
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Linear shallow water equations for 2-layer model
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Characteristic depth: h = Hy Hyf(H) + H3).

Generalised equation for barotropic planetary/topographic waves
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Complex variable
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QG Theory for a continuously stratified fluid
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Two-layer QG model
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