Final Exam- “Thermal Physics 2” (NS-355B)

February 4, 2010
Duration of the exam: 3 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials in all sheets, on the first sheet also your address and
your student ID number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes. A list with some
useful formulas is given at the end of the exam sheet.

1 Heat capacity of liquid *He

Liquid “He, which are bosonic atoms, becomes superfluid below a temperature of
2.17 K. Just as in a crystal, the low energy excitations of liquid *He are sound waves,
whose quanta are the phonons. However, in liquid *He there is also another type of
elementary excitation called the roton, see Figure 1. The dispersion relations for the
phonons and rotons are, respectively,
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where ¢; is the sound velocity, A is the energy gap of the rotons, u,. is the effective
mass of the rotons, and p = hk is the momentum of the atoms. As we have seen in
crystals, the low energy excitations determine the behaviour of the thermodynamic
quantities, such as the specific heat. In this sense liquid “He can be described as an
ideal gas of phonons and an ideal gas of rotons.

(a) (0.5) Let us first concentrate on the phonon gas. Calculate the temperature
dependence of the free energy of the phonon gas, which is given by the free energy
of the ideal Bose gas

d3p
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F= —kBT/ln(1+n)

where n = 656%1 is the Planck distribution. Hint: write it as a dimensionless
integral and extract the temperature dependence without solving the integral
explicitly. Recall that d3p is an infinitesimal volume element of a sphere.

(b) (0.5) Calculate the temperature dependence of the entropy and specific heat of
the phonon gas.
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Figure 1: Spectrum of “He, with energy (vertical axis) versus momentum (horizontal axis),
showing the phonon and roton excitations.

(c)
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(0.5) Consider now the roton gas. Argue that if A > kgT the Maxwell-
Boltzmann distribution can be used for the rotons instead of the Bose-Einstein
distribution function. Furthermore, show that the free energy of the ideal Bose
gas reduces to the free energy of a Boltzmann gas

d3p
(2mh)3’

F%—kBT/TLB

where ng is the Boltzmann distribution.

(0.5) Calculate the temperature dependence of the free energy of the roton gas
by approximating the integral assuming that py > , /’%. Notice that the main

contribution from the Gaussian term comes from p &~ py. Show that
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As before, you could then determine the entropy and the specific heat, but you
don’t need to do it here.

Diffusion

Bacteria are injected in the center of a Petri dish, which is a circular transparent dish,
used for growing bacteria. The bacteria tend to stay in a layer of the Petri dish which
is about 1 mm below the surface. These bacteria swim with a velocity of 20 pm/s.
They can however only swim for 1 second, after which they ”tumble” for 0.2 second:
they make random movements in the same place, during which their spatial orientation
changes.



(a) (0.5) Assuming that the directions of motion before and after tumbling are com-
pletely uncorrelated, determine the effective diffusion coefficient of the bacteria.

(b) (0.5) Roughly how long does it take the bacteria, injected in the middle of the
Petri dish with a radius R = 5 cm, to reach the edge of the Petri dish?

3 Linear Response

The Potts model is a simple generalization of the Ising model to an arbitrary number of
states. Here we choose 100 states. The sites of a lattice j carry a variable which takes
one of 100 values, say s; € {1,2,...,100}. The energy is lower when two neighboring
sites are in the same state, so the Hamiltonian is:

100

H = —JZ(S(SZ', Sj) — Zth(S(SZ, k)
(i) k=1

%

with J > 0, the first sum running over nearest-neighbor pairs of sites, and the second
sum running over all sites. Analogous to the magnetization in the Ising model, we now
define the 100 quantities My =), 6(s;, k), for k= 1,...,100.

(a) (0.5) Show that the expectation value of these quantities My can be written as

1 0log(2)
M) = - 208%)
(b) (0.5) Show that the fluctuations in My, are related to the magnetic susceptibilities
Xk = —8%:“) via

Xk = B (M) — (My)?) .

4 Metamagnetism in FeCl,

Magnets which undergo a first-order phase transition in an increasing magnetic field are
called metamagnets. There is a variety of metamagnets that exhibit tricritical points.
One that has been studied in detail is FeCl,. In this material, Fe?T ions occupy sites
on stacks of parallel two-dimensional triangular lattices separated by the chlorine ions.
Each Fe?* ion carries an effective spin of % The Cl atoms do not carry spin; for this
reason we only concentrate on the Fe?T ions. In Figure 2, we show the structure of the
Fe planes, and we have left out the Cl atoms for clarity.

The Hamiltonian of the system is
1
H = —§ZZJ;’;,S;SJW, (1)
J 7
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Figure 2: Structure of the Fe ions in the lattice of FeCl,. The Cl atoms are situated between
the Fe planes, but have been left out of the figure for the sake of clarity. The in-plane
nearest-neighbour bonds are indicated by solid lines. The dashed lines show the bonds of
one particular Fe atom towards nearest-neighbour atoms in adjacent planes. On the right,
we have indicated the A and B sublattices.

where SJ- is the z-component of the spin at site j, which can take positive or negative
values, S; = &1 (i.e., it is an Ising variable). The exchange function, which describes
the coupling between different sites, is given by

J1 if 7 and j” are nearest neighbours in the same plane,
J]-- =49 —J if 7 and j' are nearest neighbours in adjacent planes,
0 otherwise.

We assume that J; > 0 and J, > 0.

(a) (0.3) For zero temperature, describe the orientation of the spins within a single
plane. How are the spins in different planes oriented with respect to each other?

The system is well described by a mean-field calculation. We define my = (S]i_*) as

the average spin per site (magnetisation) of the spins in sublattice A, and mp as the
average spin per site in sublattice B.

(b) (0.5) Show that in this mean-field approximation, the energy per site is
u=U/N = LzJomamg — 121J1(m5 + m3),
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where z; is the number of nearest neighbours within one plane and z; is the number
of nearest neighbours in adjacent planes. Justify why you get the prefactor % for
the first term and i for the second term.

(0.8) Now, we want to derive the entropy of the system. The entropy per site
is given by S/N = s(my) + s(mgp), where s(ma) and s(mg) are the entropies of
mizing. In order to determine the function s, let us limit ourselves to s(my) (i.e.,
we restrict ourselves to the sublattice A). Compute the number of spins up Nl
in terms of the magnetisation m, and of the total number of spins N, and use
that the total entropy is given by the logarithm of the number of configurations

Wilh a gi\/en M,
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to derive that

s(mA) = SA/NA
= kg [log2 — (1 + ma)log(1 +ma) — (1 — ma)log(l — ma)] .

(d) (0.2) Using the results of (b) and (c), write down the free energy per particle

f(mA7 mB)-

Now, if one defines the average magnetisation m and the staggered magnetisation m

via
m = 3(ma +ms),  ms=z(ma—ms),

and one expands f to sixth order in mg with coefficients depending on m (don’t do

this expansion yourself), one finds that

Jo(m,m,) = co(m) + Lea(m)m + tes(m)mg + tes(m)mg,

where
co(m) = %ame — T s(m), with o, = 292 — 21J1,
kgT
CQ(TTL) = 1 _Bm2 — N, with oy = 21J1 + ZQJQ,
T
cg(m) > 0.

(2)

(e) (0.4) Do you recognise expression (2) for the free energy as something known?
How is it called? What can you describe with it? Discuss the region of validity

of the expansion.

(f) (0.5) There is a second-order phase transition between the paramagnetic (no spin
order) phase and the antiferromagnetic phase. Using equation (2), determine the

expression for the temperature 7'(m) where the transition takes place.



(g) (0.5) Can you also have a first order phase transition in this case? Justify your
answer.

Now, we apply a magnetic field in the z-direction. Therefore, the Hamiltonian gets an
extra contribution from the magnetic field, and becomes

H==3 33 11588 - h Y S; 3)
i 7 i

where h measures the strength of the magnetic field.

(h) (0.3) What should happen with the spin configuration when the magnetic field
is very strong?

(i) (0.7) Argue that the free energy per particle f(m, ms) gets an extra contribution
—hm compared to fy of equation (2). Explain that in order to find the minima
of the free energy for fixed mg, we have to find the solutions of h = % (where

fo is the free energy without magnetic field). Under the assumption that we fix

ms = 0, derive that m satisfies the transcendental equation

h — ozmm)

m = tanh ( T (4)

14z

== 2 arctanh z.
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Hint: log

We now incorporate the staggered magnetisation, which also reacts to the magnetic
field. By expanding the free energy in powers of mg as before, we now find (don’t do
it yourself)

fa(mo, ms) = co(mo) + ge2(mo)mg + 1 [ea(mo) — 2¢(mo)] my + §&s(mo)mg,

ksTmo

where my = my (T, h) is a solution of equation (4). The function ¢(mg) = Tl e TR T
0 m

describes the change to c4(my) caused by the coupling of the staggered magnetisation

to the magnetic field. Also cg(my) is changed to é(myg), but we do not consider its

exact form here, since it is enough to consider that it is positive.

The phase diagram for the magnetisation m(7’) versus temperature is given in Figure 3.

(j) (0.5) There are first-order phase transitions between the paramagnetic phase
(P) and the mixed phase, and between the antiferromagnetic phase (AF) and
the mixed phase. How can one calculate the transition temperatures 7(m) of
these phase transitions? Only describe the steps that have to be done, without
calculating explicitly.

(k) (0.4) For the first-order phase transition, draw sketches of the free energy: (i)
below the transition temperature, (ii) at the transition temperature, (iii) above
the transition temperature. Indicate clearly the differences between the three
sketches.

(iv) Draw also a qualitative sketch of the order parameter as function of the
temperature and indicate clearly the transition temperature in your sketch.
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Figure 3: Phase diagram of a metamagnet. On the horizontal axis, we have the magneti-
sation m and on the vertical axis the scaled temperature kg7 /ay. The antiferromagnetic,
paramagnetic (normal), and mixed phases are indicated by AF, P, and mixed, respectively.
In the mixed phase, the material consists of regions which are antiferromagnetic and regions
which are paramagnetic (normal). Phase transitions of first order are indicated by dotted
curves, and those of second order by solid curves. Here, the phase diagram is given for the

case that &L > 3.
20Jo 5

(1) (0.4) Repeat the steps of part (k), but now for a second-order phase transition.

(m) (0.5) The material FeCl, is known to exhibit a tricritical point if % > 2. What
is a tricritical point? For 0 < % < %, the phase diagram changes and there is a
critical point, which is similar to the critical point in the phase diagram of water,
where the transition line between the liquid and gas phases terminates. Discuss
what happens around a critical point in terms of a possible symmetry change of
the different phases.

Formulas

Maxwell-Boltzmann distribution: g(e) o< exp(—¢/kgT)

Planck distribution: f(E) = eﬂE%l

Fermi-Dirac and Bose-Einstein distributions: f(F) =
stands for fermions and the sign — stands for bosons.

m, where the SigIl +

. . + 2
e Gaussian integral: L;O dre™ ™ = /%

Stirling’s approximation: log(n!) &~ nlogn —n



