Instituut voor Theoretische Fysica, Universiteit Utrecht

FINAL EXAM ADVANCED QUANTUM MECHANICS
January 31, 2012

¢ The duration of the exam is 3 hours.

s The exam is closed-book.

e Usage of a calculator and a dictionary is allowed.

e Use different sheets for each exercise.

e Write your name and initials on every sheet handed in.
e Divide your available time wisely over the exercises.

Problem 1 (20 points)

Consider two particles having only spin degrees of freedom (no orbital angular mo-
mentum), of spin s; and s, that are subject to the following Hamiltonian:
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Expanding the Hilbert space of the two particle system on a suitable basis, compute
the spectrum of the system (energies and eigenstates) in the following three cases:

1. The two particles are distinguishable, and have spin s, = so = 1 /2.
2. The two particles are indistinguishable, and have spin s; = sy = 1 /2.

3. The first particle has spin s; = 1/2 whereas the second has spin 8y = 1.

Problem 2 (20 points)

Consider a particle in a harmonic oscillator potential, whose Hamiltonian can be
written in the position representation as follows
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As well known, this system admits an exact solution. However, in this problem you
will be asked to use the variational method to find an approximate ground state from
the ansatz
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1. Show that the value of the energy functional on the ansatz Wa(x) is
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Note: to solve this point, the following integrals may be useful:
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2. Compute, using the variational method, the ground state energy and estimate
the error AE of the approximation,
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3. Explain why any good ansatz for the ground state of this Hamiltonian should
consist of functions of a definite parity (odd or even), i.e. satisfying either

fr) = f ) or [ = f ().

Problem 3 (20 points)

Consider an one-dimensional harmonic oscillator perturbed by a cubic potential. The
system is described by the following Hamiltonian,
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where A < 1. As usual, we indicate the eigenstates of the unperturbed problem by
{In) }nen, meaning that

Holny = EQn) n=012...,
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in such a way that E, ) is an increasing sequence.
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1. Show that the matrix element of the potential is
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when m > n.

Note: it can be useful to use the raising and lowering operators, af and a: recall
that they are related to P and Q by
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2. Using perturbation theory, show that the first order correction to the energy
vanishes for any state.
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3. Using perturbation theory, give an expression for any energy level at orders \°,
Al and A2,

Problem 4 (20 points)

Answer the following points in a clear and concise way.

1. Define the following concepts:

(a) group,
(b) representation of a group on a Hilbert space,
(¢) irreducible representation of a group on a Hilbert space,
(d) unitary representation of a group on a Hilbert space.
2. Consider a group G and a Hilbert space of a quantum mechanical system
hosting a unitary representation g v U(g) of (&, where g € G. Prove that, if

Ulg) commutes with the Hamiltonian for any ¢ € G, then any two states in
the same irreducible representation of  have the same energy.



Problem 5 (20 points)

Consider scattering of a one-dimensional particle by a rectangular potential barrier
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assuming that the particle moves towards the potential barrier from the left. Split
the real line of z into three regions and choose in regions I and IT a solution Y(x, k)
of the scattering type

e RegionI: z < —a, 9z k)= etkz 4 A(k)e~ ke,
e Region II: = > a, iz, k) = B(k)e*,
e Region III: —a < < a.

1. Solve the Schridinger equation in the region IIL

2. By using the sewing conditions for the wave function, show that the scattering
coeflicients are
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where a = Vk* — Vg ..

3. Determine the value of the transmission and reflection probabilities for the
particular case k? = Vj.
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