Instituut voor Theoretische Fysica, Universiteit Utrecht

FINAL EXAM ADVANCED QUANTUM MECHANICS

January 29, 2013

• The duration of the exam is 3 hours.

The exam is closed-book.
 Usage of a calculator and a dictionary is allowed.

Use different sheets for each exercise.

Write your name and initials on every sheet handed in.

Divide your available time wisely over the exercises.

Problem 1 (10 points)

Find the energy levels of the harmonic oscillator

$$H = \frac{1}{2m}P^2 + \frac{1}{2}m\omega^2 Q^2$$

by using the Bohr-Sommerfeld quantization rule.

Problem 2 (10 points)

The components of the angular momentum are realized as the following operators

$$L_i = \epsilon_{ijk} Q_i P_k$$
.

By using the Heisenberg commutation relations

$$[Q_i, Q_j] = 0$$
, $[P_i, P_j] = 0$, $[Q_i, P_j] = i\hbar \delta_{ij} I$,

show that for any i = 1, 2, 3 the following commutation relations hold

1. $[L_i, P_1^2 + P_2^2 + P_3^2] = 0;$

2. $[L_i, Q_1^2 + Q_2^2 + Q_2^2] = 0$.

1

Problem 3 (20 points)

Consider a system of two non-interacting electrons, each of them has spin 1/2. Let V be a two-dimensional Hilbert space associated with the spin states of one electron.

- 1. Determine the dimension of the Hilbert space of this two-electron system:
- 2. Write down the Lie algebra generators J_i , i = 1, 2, 3, of the rotation group acting on the space $V \otimes V$:
- 3. Compute the corresponding Casimir operator \vec{J}^2 , where $\vec{J} = (J_1, J_2, J_3)$;
- 4. What are the spins of the irreducible representations arising in the decomposition of the tensor product $V \otimes V$? Motivate your answer.

Problem 4 (20 points)

Consider a one-dimensional harmonic oscillator perturbed by a quartic potential. The system is described by the following Hamiltonian.

$$H_{\lambda} = \frac{1}{2m}P^2 + \frac{1}{2}m\omega^2 Q^2 + \lambda \frac{m^2\omega^3}{\hbar}Q^4,$$

where $\lambda \ll 1$. As usual, we indicate the eigenstates of the unperturbed problem by $\{|n\rangle\}_{n\in\mathbb{N}}$, meaning that

$$H_0 |n\rangle = E_n^{(\mbox{\scriptsize 0})} |n\rangle \qquad n = 0, 1, 2 \dots,$$

in such a way that $E_n^{(0)}$ is an increasing sequence.

Using perturbation theory, find the first order correction to the energy $E_n^{(0)}$ for an arbitrary n.

Note: it can be useful to use the raising and lowering operators, a^{\dagger} and a; recall that they are related to P and Q by

$$a^{\dagger} = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} Q - \frac{i}{\sqrt{m\omega}} P \right), \quad a = \frac{1}{\sqrt{2\hbar}} \left(\sqrt{m\omega} Q + \frac{i}{\sqrt{m\omega}} P \right).$$

Problem 5 (40 points)

In the leading Born approximation

- 1. Compute the differential cross-section for scattering on the potential $V(r) = V_0 e^{-\alpha r}$. where V_0 and $\alpha > 0$ are constants and r is a radial coordinate in three dimensions.
- 2. Compute the corresponding total cross-section.

Problem 6 (Bonus problem) (30 points)

The Hamiltonian of a charged massive particle in an electromagnetic field has the form

$$H[\vec{A},\varphi] = -\frac{\hbar^2}{2m} \vec{\nabla}^2 + \frac{ie\hbar}{mc} (\vec{A} \cdot \vec{\nabla} + \frac{1}{2} \text{div} \vec{A}) + \frac{e^2}{2mc^2} \vec{A}^2 + e\varphi \,. \label{eq:Hamiltonian}$$

Here m and e are the mass and charge of the particle, \vec{A} and φ denote the vector and scalar potential of the electromagnetic field, respectively. Under the gauge transformations the vector and scalar potentials transform as follows

$$\vec{A} \rightarrow \vec{A}' = \vec{A} + \vec{\nabla}\chi,$$

 $\varphi \rightarrow \varphi' = \varphi + \frac{1}{c}\dot{\chi},$

where χ is an arbitrary time-independent function of coordinates and time.

Show that if the gauge transformation are supplemented by a simultaneous transformation of the wave function

$$\psi(x) \to \psi'(\vec{x}) = e^{i\alpha} \psi(\vec{x})$$

with the phase $\alpha \equiv \alpha(\vec{x},t)$ being a properly chosen function of coordinates and time, then the Schrödinder equation

$$i\hbar \frac{\partial \psi'}{\partial t} = H[\vec{A'}, \varphi']\psi'$$

is satisfied as a consequence of the corresponding equation for ψ

$$i\hbar \frac{\partial \psi}{\partial t} = H[\vec{A}, \varphi]\psi$$
 .

2. Show that the density of the probability current

$$\vec{s} = \frac{\hbar}{2mi} \Big(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* - 2i \frac{e}{\hbar c} \vec{A} \psi^* \psi \Big)$$

is preserved under gauge transformations.