# Climate Dynamics (NS-363-B) (test 1, 4 July 2012, 9:00-12:00)

In this test the symbols, if not explained, have their usual meaning. Answers may be given <u>Dutch or English</u>

## **Problem 1**



FIGURE 1. High level layered (altostratus) clouds overlying non-layered (cumulus) clouds over the Wadden Sea and the island of Ameland (Netherlands) on 7 July 2011.

Which type of cloud, shown in the picture in figure 1, will most likely have a cooling effect on the climate near the Earth's surface? Why?

## **Problem 2**

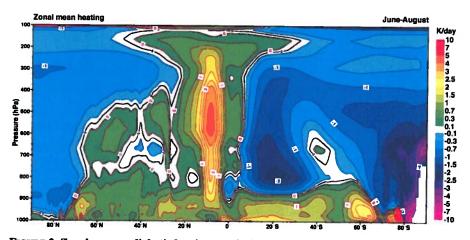



FIGURE 2. Zonal average diabatic heating rate in June, July and August as a function of pressure and latitude. The average is for the period 1979-2001.

- (a) What is the reason for the strong diabatic heating (about 4 K per day) in the middle of the troposphere at approximately 10°N (figure 2).
- (b) What is the reason for the strong cooling (about 2 K per day) in the sub-tropics of the southern hemisphere (around 20°S) at about 800 hPa (figure 2).
- (c) What mechanism is the cause of the heating below 900 hPa at this latitude (around 20°S in figure 2)?

### **Problem 3**

The long-wave optical path,  $\delta$ , of a layer with thickness  $\Delta z$  in metres is given by

 $\delta = \kappa \Delta z$ .

Here,  $\kappa$  is the absorption coefficient.

- (a) An absorption cross section,  $\sigma$  (units: m<sup>2</sup>kg<sup>-1</sup>), is frequently used in theory instead of an absorption coefficient. Write down the expression for  $\delta$  in terms of  $\sigma$ .
- (b) Assume that the layer contains one well-mixed greenhouse gas with a long wave absorption cross-section,  $\sigma$ =0.3 m<sup>2</sup>kg<sup>-1</sup>. The specific concentration, q, of this greenhouse gas is 400 ppmv. What is the optical depth for transmission of long-wave radiation of this layer if its mass per unit horizontal area is 1000 kg m<sup>-2</sup>?

Useful equations are the following.

Hydrostatic equation:  $\partial p/\partial z = -\rho g$ .

Equation of state: p = nkT or  $p = \rho RT$ . Here k is Boltzman's constant (=1.381×10<sup>-23</sup> J K<sup>-1</sup>), R is the specific gas constant and molecular number density, n (in units of m<sup>-3</sup>). The specific gas constant for air is equal to 287 J K<sup>-1</sup>kg<sup>-1</sup>. The specific gas constant for the well-mixed greenhouse gas is equal to 188 J K<sup>-1</sup>kg<sup>-1</sup>.

#### **Problem 4**

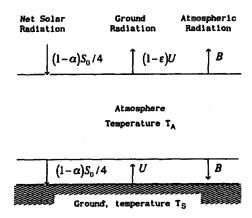



FIGURE 3. Simplified model of the climate system.

Let us adopt a single slab model of the Earth-atmosphere system (see figure 3). The parameter,  $\alpha$ , is the albedo of the Earth's surface. The parameter,  $\varepsilon$ , is the emissivity of the atmosphere. The parameter  $S_0$  is the Solar constant (=1366 W m<sup>2</sup>). The system is in radiative equilibrium.

- (a) Derive an expression for the emission temperature,  $T_E$  of the Earth using Stefan-Boltzman's law, which states that the radiation emitted by a black body is proportional to the fourth power of the temperature of the emitting surface (constant of proportionality is  $\sigma=5.67\cdot10^{-8}\,\mathrm{W}$  m<sup>-2</sup>K<sup>-4</sup>). Assume that the earth is a black body.
- (b) Derive an expression for the back-radiation, B (a measure of the strength of the greenhouse effect) in terms of  $\sigma$ ,  $\varepsilon$  and  $T_{\rm E}$ .

## **Problem 5**

The vertical dependence of the density,  $\rho_{\nu}$ , of water vapour in the atmosphere can reasonably accurately be approximated by the following formula.

$$\rho_{\nu} = \rho_{g,\nu} \exp\left(\frac{-z}{H_{\nu}}\right)$$

Here  $\rho_{\text{g,v}}$  is the density of water vapour at z=0 (the ground) and  $H_{\text{v}}$  is the so-called "scale height". During the Indian summer monsoon a typical value of  $\rho_{\text{g,v}}$  is 0.024 kg m<sup>-3</sup>. A typical value of  $H_{\text{v}}$  is 3000 m.

- (a) How much precipitable water in the form of water vapour per square metre is contained in the atmosphere under such circumstances?
- (b) Where does all this water vapour come from?