Instituut voor Theoretische Fysica, Universiteit Utrecht

EXAM CLASSICAL FIELD THEORY

June 29, 2010

- The duration of the test is 3 hours.
- Only the lecture notes by Gleb Arutyunov "Classical Field Theory" may be consulted during the test.
- Usage of a calculator and a dictionary is allowed
- Use different sheets for each exercise.
- Write your name and initials on every sheet handed in.
- Divide your available time wisely over the exercises.

Problem 1

Consider the following Lagrangian density for a massive vector field

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{m^2}{2}A_{\mu}A^{\mu}.$$

Show that every component A_{μ} satisfies the Klein-Gordon equation

$$(\partial_{\nu}\partial^{\nu} + m^2)A_{\mu} = 0.$$

Problem 2

The Hamiltonian for a real two-dimensional scalar field $\phi(x,t)$ is given by

$$H = \int \mathrm{d}x \left[\frac{1}{2} p^2 - \frac{1}{2} \partial_x \phi \, \partial_x \phi - \frac{m^2}{\beta^2} (1 - \cos \beta \phi) \right],$$

where m is the mass and β is a parameter (the coupling constant). By using the Noether theorem Find the momentum P corresponding to the space translations and the generator K of a Lorentz rotation:

$$\begin{split} x^{\mu} &\to x^{\mu'} = x^{\mu} + a^{\mu} \\ x^{\mu} &\to x^{\mu'} = \Lambda^{\mu}_{\ \nu} x^{\nu} \,, \quad \Lambda^{\mu\nu} = -\Lambda^{\nu\mu} \,. \end{split}$$

Check that the found quantities do not depend on time.

Problem 3

Consider the action for electromagnetic field A_{μ} :

$$S = -\frac{1}{4} \int d^4 x \, F_{\mu\nu} F^{\mu\nu} \,.$$

- 1. Derive the corresponding Euler-Lagrange equations;
- 2. Enumerate global and local symmetries of this action;
- 3. Derive the corresponding stress-energy tensor.

Problem 4

Concerning the Lorentz group, answer the following questions:

- 1. How many connected components has the Lorentz group?
- 2. How these components are related to each other?
- 3. Which of these components is a subgroup of the Lorentz group?

Problem 5

Consider the following vector and scalar potentials

$$\vec{A}(x,t) = \vec{A}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}, \qquad \varphi(x,t) = 0,$$

where $\vec{A_0}$ and \vec{k} are constant three-dimensional vectors, and ω is a constant frequency.

- 1. Derive the electric and magnetic fields corresponding to these potentials
- 2. Determine the conditions imposed on \vec{A}_0 , \vec{k} and ω by Maxwell's equations assuming that the absence of charge and current densities. *i.e.* $\rho = 0$ and $\vec{j} = 0$.

Problem 6 (Bonus)

Consider an interaction scalar field $\phi(x)$ on the 3 + 1-dimensional Minkowski space-time described by the following action

$$S = \int d^4x \left(\frac{1}{2} \partial_\mu \phi \, \partial^\mu \phi - \lambda \phi^4 \right),$$

where λ is a constant (called the "coupling constant").

1. Show that the action is invariant under infinitezimal transformations

$$\phi \to \phi + \delta \phi$$
, $\delta \phi = \epsilon (x^{\mu} \partial_{\mu} \phi + \phi)$,

up to a total derivative term $\delta S = \epsilon \int d^4x \ \partial_{\mu} F^{\mu}$, where ϵ is a constant small (infinitezimal) parameter. Find the vector F^{μ} explicitly.

- 2. Construct the corresponding Noether current J^{μ} by using the general expression from the lecture notes. You can check, however, that this current is not conserved, i.e. $\partial_{\mu}J^{\mu} \neq 0$. The reason for this non-conservation is that the action S is not exactly invariant under infinitezimal transformations of ϕ , but it is invariant up to a total derivative term.
- 3. Show that an improved current

$$J^{\mu}_{\text{improved}} = J^{\mu} + F^{\mu}$$

is conserved due to equations of motion.