Classical field theory 2012 (NS-364B) - Midterm

Tue Apr 17 2012, 15:00-18:00, MG Kantine: assistant: Laurent Dufour.

You have three hours to solve this midterm. The exam has in total 30 points (plus bonus
points), and it carries 30% of the grade. The exam is closed books.

There are two bonus questions: 3E and 5D. If you solve them., you will get extra points.

Problem 1. Theoretical questions. (6 points)
(A) State the Noether theorem of classical mechanics.

(B) Define the canonical Poisson bracket in field theory. Write down the Poisson algebra
for the field ¢;(#,¢) and its canonical momentum 7”(, t). i.e. the canonical Poisson
brackets for the three possible pairs.

(C) There are two types of boundary conditions on a closed surface in electrostatics one
can choose from: the Dirichlet and von Neumann boundary conditions (or a linear
combination of the two). What is the Dirichlet and what von Neumanu boundary
condition? Can you provide an argument to why it is enough to specify one of the two
conditions in order to uniquely solve for the potential in the region surrounded by a
closed surface?

(D) The gyromagnetic ratio of a particle (or of a collection of particles) relates macroscopic
quantities with microscopic quantities. What are these quantities?

Problem 2. Dynamics of constrained systems. (6 points)

y

Consider a particle moving on a hyperbola y? — 2% = a? (see the figure above), where a is

some distance scale, and whose Lagrangian is given by,
1 _ .
L= ;2«771[:1%2 + 7 (1)
(A) By making an appropriate substitution of coordinates (what is it?), show that the La-
gragian (1) can be written as.

1 .
L= §ma2 cosh[2¢(t)]¢* . : (2)
Calculate the canonical momentum p, and show that the Hamiltonian can be written
as,
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(B) Solve for ¢ = ¢(t). You can write your solutions implicitly, 7.e. in this case as t = t(¢).
Show that for small/large ¢, the solution for ¢(t) can be written as (for t > 0),

)
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where v is the (conserved) particle’s speed and ¢o = I'?(3/4)/v4m ~ 0.599 is a constant.
Show also that for large times t > a/v,

+ agy (5)
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Could you have guessed this answer (without doing the calculation)?

(C) Give an argument which implies the following claim: ‘The speed of a free particle (in
the absence of an external potential) constrained to move along an arbitrary, smooth
curve is constant.’

Hint: Note that H does not explicitly depend on time, and hence it is Poisson conserved.
This allows you to replace H by a conserved energy, H — E = muv*/2, where v is a conserved
speed. Furthermore, you may find useful the following integral,

I(¢) = / V/cosh(2¢)dg = —iEllipticE(16, 2) . (6)

where E(¢|m) = EllipticE(¢, m) denotes the elliptic integral of the second kind, defined by

the integral, E(¢|m) = fD(p \/1-m sin?(¢)d¢. This integral has the following small and large
argument ¢ expansions,

8¢ ~ I*(3/4
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Problem 3. The Hamiltonian of a Lifshitz model. (7 points)
Consider the following scalar field Lagrangian:

L) - S VeE -V (8
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where £ is a Lagrangian density, V' is a potential, ¢ = ¢(x) is a scalar field that depends in
general on space and time (z = (20, ), (2° = ¢t and ¢, is the sound speed), V = ):f:] e,
is a gradient operator, ¢ are the unit vectors of an orthogonal basis, n is a positive integer,
and d is the number of spatial dimensions.

(A) Determine the canonical momentum my(x) of the field ¢, the Hamiltonian and the Hamil-
tonian density for the Lifshitz Lagrangian ().
(B) Calculate the Poisson brackets of the Hamiltonian with ¢ and m4. Using these brackets
show that the Hamilton equations can be written as,
d

D)t = cimla),  Tlz) = Vo - = V(e). (9)
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(C) Does the Lifshitz Lagrangian (8) preserve or break Lorentz symmetry? Justify your
answer.

(D) Solve equations (9) for the case when n = 1 and for V = —p(Z)p(z) in d = 3, where
p(Z) is a (static) charge density. Show that, up to a harmonic function, the general
solution can be written as,

YN ,_pE)

(E")  (Bonus question) Find the solution for ¢{# ) as in part D, but now with V = (m*c?/2h%)¢?(z)
—p(£)¢(z), where m is a mass parameter, A is the reduced Planck constant, and ¢ is the
speed of light.
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Problem 4. Noether’s Theorem. ({ points)
The Noether theorem of classical field theory states that there are conserved Noether currents
associated with a Lagrangian density £(¢;), where @1(z) is a classical field, and they are of
the form,
g oL
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where n = 1,2,.., s is the index of global coordinate shift parameters wy, (see Eq. (12) below),
and ®;,, and X" are defined in terms of the field shifts and the coordinate shifts as

(®1n — (00 x7) - L1 (11)

8

Sy = Z Crown, ' =Y Xlw,. (12)
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n=1
Consider now scalar fields, for which & r» =0, and (global) coordinate shifts of the form,
dxt = §How” (13)

(here a summation over the spacetime index v is implied, and y is also a spacetime index)
such that X# = §~.

(A) Write down the form of the conserved currents JIii (in terms of £ and its derivatives)
associated with these coordinate shifts. These currents have a name; what is that name?

(B) Consider an integral over all d spatial directions of JY, where v = (0,1) can be a time-like
or a spatial index,

Pt) = | dhasfie). (14)

The integral is assumed to be over the whole space, i.e. V — 0o. Show that P,(t)’s
are conserved, t.e. dP,(t)/dt =0 (u = (0,4)). What is the physical significance of P,’s.
Provide a separate interpretation for P, and for P

Hint: In order to prove the conservation of F,’s in part B, make use of the current conservation
and of the Gauss’ theorem.



Problem 5. Potential in two spatial dimensions. (7 points)

(A)

Construct the Green function for two spatial dimensions for an infinite space satisfying,
VIG(F &) = VPG5 §) = —4nd* (T — &) (15)
where V and V' are the gradient operators with respect to 7 and I’ respectively.

Make use of the Green function found in part A and of the Poisson equation to solve for
the electrostatic potential of a charged ring of radius a (see the figure below). The total
charge on the ring is ¢. The charge density of the ring is given by p(f) = Q&*(Z — a%) =
(Q/(27a)]é(r — a), where # is the unit radial vector.

Make use of the solution in part B to calculate the monopole (¢), dipole ((f) and
quadrupole moments (g;;) of the problem.

(bonus question)

There are two point static charges g; and ¢ (g1g2 < 0) and masses m, and mo at a
distance d lying on a plane, such that the two dimensional Green function calculated in
part A applies. By solving the relevant equation of motion, calculate the time feon =
teon(d) as a function of d, ¢1, g2, ™1 and my at which the charges will collide. You will
get a power law feon o d°; what is s7

Hint- The Green function in part A is of the form, G(%; &) = —2In(||7 — Z'||/r)), where
ro is some distance scale (changing ro corresponds to adding a constant term to the Green
function and has thus no physical relevance). For part B, note that the symmetry of the
problem tells us that this Green function (with rg = @ and ¥’ = 0) can be reinterpreted as
the potential generated outside the ring with a total unit charge, such that the potential at
the ring vanishes. For part D the following integral can be useful,
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