Classical Field Theory NS-364B - Final Exam

The ezam will take place on Tue Jul 2 at 15-18 hours in BBG 165/169.
The exam is closed books. 90 points in total; counts as 45% of the total grade. Good luck!

July 1, 2013

1 Theoretical questions (22 points: questions 1-2: 5 pts; 3-4: 6 pts)

1. Sketch the light cone (on which a massless particle can move) and use it to explain
the principle of causality. Hint: it suffices to draw and explain the allowed trajectortes.
Emphasize what are the properties that trajectories of physical particles must have.

2. Lorentz symmetry is a non-compact Lie group. Define a Lie group. What is the
non-compactness referring to?

3. Electromagnetism possesses a gauge symmetry. Explain how an electromagnetic vec-
tor field A* transform under the gauge symmetry. Use this gauge transformation to
construct the gauge invariant components of A*. Explain also which of these compo-
nents are dynamical and which are non-dynamical. What is the physical meaning of
the non-dynamical component(s)?

4. The Liénard-Wiechert potentials are of the form,
- e ry —
o(t,T) = oL At, %) = P (1.1)

Explain what physical problem the Llena,rd-Wlechert potentials solve. In which gauge?
Explain what is the meaning of R = I|B|| and 7 in (1.1). Explain in detail how R
depends on ¢ and Z. In what sense are these potentials causal?

2 Isthisa classical field? (24 points; each question 6 pts; bonus 5 pts)

Consider the following Lagrangian density for two real scalar fields:

. . . . 2
= B [¢1¢1 + Papa — it + 2'¢>1<f>2] g (;10)2 [(Vé1) - (V1) + (Vé2) - (V)]

where V is some potential and the dot represents a time derivative.




1. Calculate the equations of motion for both real fields ¢, and ¢,.

2. Introduce a complex scalar field ¥ = ¢, + i¢. Combine the above two equations of
motion appropriately to obtain an equation of motion for 1 and set ¢; = A and ¢, = m.
What do you observe? - Hint: You should obtain the time-dependent Schrédinger
equation for a single non-relativistic particle.

3. Now, construct an appropriate Lagrangian density for the complex field 1; if you plug
in the Ansatz 9 = ¢; + i¢ into your answer, you should retrieve 2.1). Calculate the
corresponding Hamiltonian density.

4. Show that the Lagrangian density for the complex scalar field 4 is invariant under
the global U(1) transformation 9 — e*®3. Calculate the associated conserved Noether
current.

5. Bonus question: Comment on why a classical complex scalar field obeys Schriodinger’s
equation. Do you think quantum mechanics is equivalent to a non-relativistic classical
field? Is there any phenomenon in quantum mechanics that you can think of, that you
do not expect in Classical Field Theory?

3 Energy momentum tensor (24pts; each question 4pts; bonus 5pts)

Consider a collection of charged particles with position Tn(t) and charges e,. The charge
density j° and the current density j are defined as

PE ) =D end®(F—Zult)), (&)= D enZn(t)63(F — Zalt)) (3.1)
n n
The energy-momentum tensor of this system is given by

T =3 Ph(t) #5() 6°(F ~ Ea(¢)).- (32)

1. Show that the energy-momentum tensor is only conserved up to a force density G*,
o,T" = G* (3.3
and that G* vanishes for free particles (there are no external forces).

2. The electromagnetic force is given by
dp* dz¥

b= 2 H
ff= o eF*® 7 (3.4)
where for simplicity we took e, = e. Show that the force density G* is given by
G! = F*"j5v, (3.5)

where j# = (5, 7).



3. To obtain a conserved energy-momentum tensor, we have to include the contribution
of the electromagnetic field itself,

1
T = FYF"" Ny — 20 FouF? (3.6)

Show that T, = T** + T# is conserved. Hint: Use Mazwell’s equations.

4. Show that the total momentum
PH = / dBaxTH(z,1) (3.7)
is conserved.

Next, we consider the energy momentum tensor of a perfect fluid. A comoving (moving
along with the fluid) observer will see his/her surroundings as isotropic (this is true only
for special configurations of electromagnetic fields, which is what we assume here). In this
frame, the particles’ energy-momentum tensor (3.2) can be recast into the form
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where p and p are the density and pressure of the fluid.

5. Calculate the components p and p of the energy-momentum tensor T#” for an observer
at rest. Assume that the comoving observer has a velocity ¥ with respect to the
observer at rest.

6. Show that the energy-momentum tensor can be written as

» uru* 5
™ =(p+p)—(7 —p (3.9)

where U* is the four-velocity of the fluid, which in the fluid rest frame has the form
U#est = (Ca 0,0, 0)

7. Bonus question: By taking the non-relativistic limit of the conservation law 5, T*" = 0,
deduce the following (Euler’s) fluid equations:
Owp+ V- (pv) =0, (3.10)
Ou(pv) + (7 V)(p7) = —Vp. (3.11)
Of course, these equations hold only when electromagnetic fields are neglected.

Use that, in the non-relativistic limit, the four-velocity is given by U* = (c, ¥), where
i)l € 1 and p K p.



Advanced Green function (20 points; each question 10 points)

. The positive and negative frequency Wightman functions for a photon vector field (in
Lorentz gauge) or a massless scalar field are defined as homogeneous solutions of the
wave equation,

- 82G*(z;2') = 0 = —%G*(z; ), (4.1)
whereby (in the vacuum) G*(z;z’) is determined by the contribution obtained by
integrating counterclockwise around the positive frequency pole k° = w/c = ||k|],
and G~ (z;z') picks up the contribution by integrating clockwise around the negative
frequency pole k° = —w/c = —||k||. Calculate G* in position space by performing the
suitable 4-momentum integrations and show that

- 1 _ - 1
G*(z;a') = Py G (z;2) = T AZ (4.2)
where 22 = —1 and

Az} = (ct —ct' —1€)? — ||& — &' |2, Az? = (ct—ct' +1€)2 - |Z-&'||. (4.3)
Explain the origin of the infinitesimal parameter € > 0 in Eq. (4.3).

. The Pauli-Jordan, or spectral, two point function can be defined as
Gp; =G~ -G, (4.4)

Show that

Gpj = —%’F_t)ﬂ&vz —€é?), (4.5)

where Az? is defined as Az? = (t—t')2— ||7— 2 |2, sign(t— ') = O(t —t') — o' —t)
and O(t — t’) denotes the Heaviside function. Calculate the advanced Green function
in position space,

Ga(z;2) = O(t' — 1)Gps(z; 7). (4.6)
Explain the causality structure of the advanced Green function. Explain also what
kind of problems G, can be used to solve.

Hint: Make use of the Plemelj-Sokhotski theorem,

1
T F e

1
= 'P; +mé(z),

where P denotes a principal value (when integrating) and ¢ > 0 is an infinitezimal
parameter.



