INSTITUTE FOR THEORETICAL PHYSICS UTRECHT UNIVERSITY

Final exam Classical Field Theory (270 points)

Monday, 11 April, 2022, 13:30-16:30

- 1. Write your name and initials on all sheets, on the first sheet also your student ID number.
- 2. Write clearly, unreadable work cannot be corrected.
- 3. Make each exercise on a separate sheet of paper.
- 4. Give the motivation, explanation, and calculations leading up to each answer and/or solution.
- 5. Do not spend a large amount of time on finding (small) calculational errors. If you suspect you have made such an error, point it out in words.
- 6. This is NOT an open-book exam: books and/or notes are not allowed.

1. ϕ^4 -THEORY (160 POINTS, 20 POINTS FOR EACH PART)

Consider the action for 1+1-dimensional ϕ^4 -theory, given by

$$S[\phi] = \int dx \left[-rac{1}{2} (\partial_{\mu}\phi)(\partial^{\mu}\phi) - U(\phi)
ight] \equiv \int dx L \; ,$$

with the potential

$$U(\phi) = \frac{1}{4}\lambda \left(\phi^2 - \frac{m^2}{\lambda}\right)^2 \; .$$

a) Show that the equation of motion for ϕ is given by

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} = m^2 \phi - \lambda \phi^3 \ .$$

- b) Evaluate the energy-momentum tensor $T^{\mu\nu}=g^{\mu\nu}L-\frac{\partial L}{\partial(\partial_{\mu}\phi)}\partial^{\nu}\phi$ in terms of the field ϕ and its derivatives.
- c) Show that the energy density is given by

$$\epsilon = \frac{1}{2c^2} \left(\frac{\partial \phi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + U(\phi) .$$

- d) Give the energy-current density j, that obeys $\partial \epsilon/(c\partial t) = -\partial j/\partial x$, in terms of the field ϕ .
- e) Show that the total energy is conserved. (Assume that the boundary terms that you may encounter are zero.)
- f) The solitary-wave solution

$$\phi_0(x) = \frac{m}{\sqrt{\lambda}} \tanh\left(\frac{mx}{\sqrt{2}}\right),$$

is a time-independent solution of the field equation (NB: you do not need to show this). Show that $\phi(x,t) = \phi_0((x-ut)/(\sqrt{1-u^2/c^2}))$ is a time-dependent solution.

g) Linearize the field-equation around the minimum $\phi_+ = m/\sqrt{\lambda}$ of the potential $U(\phi)$ by means of writing $\phi = \phi_+ + \delta \phi$, and show that

$$\frac{1}{c^2} \frac{\partial^2 \delta \phi}{\partial t^2} - \frac{\partial^2 \delta \phi}{\partial x^2} = -2m^2 \delta \phi \ .$$

h) Compute the dispersion relation that follows from this latter equation.

2. MAXWELL THEORY (110 POINTS)

a) (20 points) At the lectures you have learned that the equations for the vector potential $\mathbf{A}(\mathbf{x},t)$ and the scalar potential $\phi(\mathbf{x},t)$ obey

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\mathbf{A}(\mathbf{x}, t) = \mu_0 \mathbf{J}(\mathbf{x}, t) :$$

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\phi(\mathbf{x}, t) = \frac{\rho(\mathbf{x}, t)}{\epsilon_0} .$$
(1)

Introduce the Green's function that obeys

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)G(\mathbf{x} - \mathbf{x}'; t - t') = \delta(\mathbf{x} - \mathbf{x}')\delta(t - t') \ .$$

with $\delta(t)$ the Dirac delta function. Show that the solution of Eqs. (1) for $\phi(\mathbf{x},t)$ is given by

$$\phi(\mathbf{x},t) = \int dt' \int d\mathbf{x}' G(\mathbf{x} - \mathbf{x}'; t - t') \frac{\rho(\mathbf{x}',t')}{\epsilon_0} .$$

Analogously, we have that (you do not need to show this)

$$\mathbf{A}(\mathbf{x},t) = \int dt' \int d\mathbf{x}' G(\mathbf{x}-\mathbf{x}';t-t') \mu_0 \mathbf{J}(\mathbf{x},t) \ .$$

b) (20 points) Consider now a moving point charge, so that

$$\rho(\mathbf{x},t) = q\delta(\mathbf{x} - \mathbf{r}(t)) ;$$

$$\mathbf{J}(\mathbf{x},t) = q\mathbf{v}(t)\delta(\mathbf{x} - \mathbf{r}(t)) ,$$
 (2)

with $\mathbf{v}(t) = d\mathbf{r}(t)/dt$. At the lecture you have learned that the appropriate Green's function is

$$G(\mathbf{x} - \mathbf{x}'; t - t') = \theta(t - t') \frac{c}{4\pi |\mathbf{x} - \mathbf{x}'|} \delta(|\mathbf{x} - \mathbf{x}'| - c(t - t'))$$
.

with $\theta(t)$ the Heaviside step function. Show that

$$\phi(\mathbf{x},t) = \int d\mathbf{x}' \frac{q}{4\pi\epsilon_0 |\mathbf{x}-\mathbf{x}'|} \delta\left(\mathbf{x}' - \mathbf{r}(t-|\mathbf{x}-\mathbf{x}'|/c)\right) \ ,$$

and show that in the non-relativistic limit this reduces to

$$\phi(\mathbf{x},t) = \frac{q}{4\pi\epsilon_0 |\mathbf{x} - \mathbf{r}(t)|} \ .$$

c) (20 points) In the remainder of this exercises we use relativistic notation for time and position, and frequency and wave vector, so that we have four-vectors with

$$x = \begin{pmatrix} ct \\ \mathbf{x} \end{pmatrix}$$
,

and

$$k = \begin{pmatrix} \omega/c \\ \mathbf{k} \end{pmatrix}$$
,

with components x^{μ} and k^{μ} , respectively. In the lecture you have also learned that the Maxwell equations can be derived from the action

$$S[A^{\mu}] = \int dx \left(-\frac{1}{4\mu_0 c} F_{\mu\nu} F^{\mu\nu} + \frac{1}{c} J_{\mu} A^{\mu} \right) , \qquad (3)$$

with $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$. Varying the above action yields (you do not need to show this)

$$\partial_\mu F^{\nu\mu} = \mu_0 J^\nu \ .$$

Perform a gauge transformation $A^{\mu} \to A^{\mu} + \partial^{\mu} \Lambda$, with Λ an arbitrary scalar function, and show that the action $S[A^{\mu}]$ in Eq. (3) is invariant under this transformation provided the current J^{μ} is conserved.

d) (20 points) We now add an extra term to the action so that

$$S[A^{\mu}] = \int dx \left(-\frac{1}{4\mu_0 c} F_{\mu\nu} F^{\mu\nu} + \frac{1}{c} J_{\mu} A^{\mu} - \frac{\lambda^2}{2} (\partial_{\mu} A^{\mu})^2 \right) ,$$

with λ a constant. Show that the equations of motion become

$$\partial_{\mu}F^{\nu\mu} - \mu_0 c\lambda^2 \partial_{\mu}\partial^{\nu}A^{\mu} = \mu_0 J^{\nu} .$$

e) (30 points) Show that this equation for A^{μ} is solved by introducing the Green's function $G^{\mu}_{\ \nu}(x-x')$, which is given by

$$G^{\mu}_{\ \ \nu}(x-x') = \int rac{dk}{(2\pi)^4} \left[k^2 \delta^{\mu}_{
u} - (1-\mu_0 c \lambda^2) k^{\mu} k_{
u}
ight]^{-1} e^{ik_{\alpha}(x^{\alpha}-x'^{\alpha})}.$$

