Midterm Exam - “Quantum Matter” (NS-371B)

April 16, 2012
Duration of the exam: 3 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials in all sheets, on the first sheet also your
address and your student ID number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes. A list with
some useful formulas is given at the end of the exam sheet.

1. Magnons in Antiferromagnets

Ferromagnetic and antiferromagnetic materials have excitations called “spin waves”
or “magnons’, corresponding to oscillations in the magnetization direction that
(classically) behave as waves. As you have seen in the exercises, in 1D ferromag-
nets, the dispersion relation is

ek = J[1 — cos(kya)] | (1)

where .J > 0 is the so-called “spin stiffness” and a is the lattice constant. On the
other hand, in 1D antiferromagnets the dispersion relation is

er = (=J)* [1 = cos®(k,a)] (2)

and now J < 0. The aim here is to understand how the heat capacity of antifer-
romagnets depends on the temperature.

1. (1.0) Given the fact that magnons obey the Planck distribution function,
determine their contribution to the heat capacity at low temperatures in
one dimension. Hint: expand the dispersion for small k,, determine the
internal energy U, and then determine the heat capacity C,. Write the
integral in terms of dimensionless variables and call it I,p.

2. (1.0) Same as (a), but now in two and three dimensions. Call the integrals
Iyp and Izp. Guess the expression for £, in two and three dimensions,
looking at Eq.(2).

3. (1.0) How is the temperature dependence of C,, for spin-waves in d-dimensions?
Compare the results for antiferromagnets with the results you know for
phonons.



2. 2D Bose-Einstein Condensation

In this exercise we will consider a two dimensional (2D) Bose gas with spin zero.

1. (1.0) Show that the surface density n = N/A of a homogeneous 2D Bose
gas is given by,
AZn=—1In{l —exp(u/ksT)], (3)

where Ay, = (h?/2rmkgT)Y/? is the thermal de Broglie wavelength.

2. (1.0) Argue, using (3), that a homogeneous 2D Bose gas does not condense
to a BEC.

3. (1.0) We can bring a 2D Bose gas in thermal contact with a classical three
dimensional (3D) ideal gas. For example, the 2D gas can be adsorbed on a
film of superfluid *He, and then it becomes part of a 3D volume containing
a classical ideal gas. Calculate the chemical potential of this 3D gas as a
function of its density and temperature. Hint: Calculate the number of
particles N(V,T,p) and invert this expression to obtain p. Try to get a
Gaussian integral.

3. Heat capacity of liquid *He

Liquid *He, which are bosonic atoms, becomes superfluid below a temperature
of 2.17 K. Just as in a crystal, the low energy excitations of liquid ‘He are
sound waves, whose quanta are the phonons. However, in liquid iHe there is
also another type of elementary excitation called the roton, see Figure 1. The
dispersion relations for the phonons and rotons are, respectively,

ép = pcy,
(p = po)?
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where ¢, is the sound velocity, A is the energy gap of the rotons, p, is the
effective mass of the rotons, and p = Ak is the momentum of the atoms. As we
have seen in crystals, the low energy excitations determine the behaviour of the
thermodynamic quantities, such as the specific heat. In this sense liquid ‘He can
be described as an ideal gas of phonons and an ideal gas of rotons.

1. (1.0) Let us first concentrate on the phonon gas. Calculate the temperature
dependence of the free energy of the phonon gas, which is given by the free

energy of the ideal Bose gas
d3
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F = kaT/ln(l +n)
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Figure 1: Spectrum of *He, with energy (vertical axis) versus momentum (hori-
zontal axis), showing the phonon and roton excitations.

where n = 1/(e’* — 1) is the Planck distribution. Hint: write it as a
dimensionless integral and extract the temperature dependence without
solving the integral explicitly. Recall that d3p is an infinitesimal volume
element of a sphere.

(1.0) Calculate the temperature dependence of the entropy and specific heat
of the phonon gas.

(1.0) Consider now the roton gas. Argue that if A > kzT the Maxwell-
Boltzmann distribution can be used for the rotons instead of the Bose-
Einstein distribution function. Furthermore, show that the free energy of
the ideal Bose gas reduces to the free energy of a Boltzmann gas

dp
(2wh)3’

F%~—/CBT/TLB

where np is the Boltzmann distribution.

(1.0) Calculate the temperature dependence of the free energy of the roton
gas by approximating the integral assuming that Do > \/ ’g . Notice that

the main contribution from the Gaussian term comes from P~ pg. Show

that
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As before, you could then determine the entropy and the specific heat, but
you don’t need to do it here.

Formulas



Maxwell-Boltzmann distribution: g(e) o exp(—¢/kpT)

Gibbs distribution:
exp{B(uN; — Ei)}

P =
‘ Z

Z = Zexp{ﬁ(#Ni - E)}

For the different ensembles: @ = 77 7 = e F, Z = e %
where S is the entropy, T is the temperature, 3 = (kgT)™', F = —kgT'InZ
is the Helmholtz function, and &g = —kgTInZ = F — uN = —pV is the
grand-potential.

Recall the usual relations from quantum mechanics:

E = hw, p = hk, E =p*/2m

Photons:
w = ck, k= 2m/\, c= AV

E = hkc = pc

Planck distribution: )

FB)= 25—

Fermi-Dirac and Bose-Einstein distributions:
InZ =+ Zln (1 -+ eﬁ(“*El))

f(E):m7

where the sign + stands for fermions and the sign — stands for bosons.

Polylogarithm function Liy(z):

00 n—1
/0 d:”;‘fl%?;i:ﬂ(mmn(?z), Lin(1) = ¢(n),

where ¢ is the Riemann zeta-function, and I'(n) = (n — 1)! for n a positive

integer.
\ 1
Lij(z) =In <1 — z)

Gaussian integral:

-



