
Solutions Trial Exam “Quantum matter” 2012

1 3He and 4He Mixtures

1. (a) We have to calculate〈
(∆N)2

〉
=
〈
N2 − 2N 〈N〉+ 〈N〉2

〉
=
〈
N2
〉
− 〈N〉2 .

Now we calculate 〈N2〉 for a fermionic single oribital system with energy ε

〈
N2
〉
≡ 1

Z

1∑
n=0

n2 exp(−β(ε− µ)n) =

=
1

1 + exp(−β(ε− µ))
(0 + exp(−β(ε− µ))) = fFD(ε− µ) = 〈N〉 . (1)

Combining the above results gives the desired result,〈
(∆N)2

〉
=
〈
N2
〉
− 〈N〉2 = 〈N〉 (1− 〈N〉).

The fluctuations go to 0 for 〈N〉 → 0 and 〈N〉 → 1, whereas they are maximal for
〈N〉 = 1

2
. This can be understood as follows: In the limit 〈N〉 → 1 (i.e., with energies

ε� µ), the positive fluctuations are small, since the occupancy may not exceed 1. For a
negative fluctuation, the occupancy of the neighbouring states (in terms of energy) has to
increase. Since these also have an occupancy close to 1, these fluctuations also have to be
suppressed. Hence, since neither positive nor negative fluctuations can be large, the total
fluctuation 〈∆N〉 is small. A similar reasoning holds mutatis mutandis for the states for
which 〈N〉 → 0 (ε� µ), due to the symmetry of the distribution function. For 〈N〉 = 1

2

(or: ε = µ), there is a lot of “room” for changing the occupancy—remark that also at the
neighbouring energies large fluctuations are possible. Hence, for energies around µ the
fluctuations are the largest, with the maximum value 〈(∆N)2〉 = 1/4 at ε = µ.

2. (a) We recall that we may compute 〈N〉 as

〈N〉 =
1

Zgr

∑
i

Nie
−(εi−µNi)/τ =

1

Zgr

∑
i

τ
∂

∂µ
e−(εi−µNi)/τ =

τ

Zgr

∂Zgr

∂µ
,

where Zgr =
∑

i e
−(εi−µNi)/τ is the grand-canonical partition sum, where i labels the states.

Similarly, we have

〈N2〉 =
1

Zgr

∑
i

N2
i e−(εi−µNi)/τ =

1

Zgr

∑
i

τ 2
∂2

∂µ2
e−(εi−µNi)/τ =

τ 2

Zgr

∂2Zgr

∂µ2
.
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For the mean-square deviation, we use 〈(δN)2〉 = 〈N2〉 − 〈N〉2 to compute

〈(δN)2〉 =
τ 2

Zgr

∂2Zgr

∂µ2
− τ 2

Z2
gr

(
∂Zgr

∂µ

)2

.

On the other hand, we have

∂ 〈N〉
∂µ

=
∂

∂µ

(
τ

Zgr

∂Zgr

∂µ

)
= − τ

Z2
gr

∂Zgr

∂µ
+

τ

Zgr

∂2Zgr

∂µ2
.

Combining the two last equations, we find the result

〈(δN)2〉 = τ
∂ 〈N〉
∂µ

.

Now we take the single-orbital expression

〈N〉 =
τ

Zgr

∂Zgr

∂µ
=

τ

Zgr

∂

∂µ

1

1− e−(ε−µ)/τ

=
1

Zgr

e−(ε−µ)/τ(
1− e−(ε−µ)/τ

)2 =
1

e(ε−µ)/τ − 1
,

where the partition sum is

Zgr =
∞∑
n=0

e−n(ε−µ)/τ =
1

1− e−(ε−µ)/τ
.

Substituting the expression for 〈N〉, we find

〈(δN)2〉 = τ
∂ 〈N〉
∂µ

= τ
∂

∂µ

1

e(ε−µ)/τ − 1
=

e(ε−µ)/τ − 1(
e(ε−µ)/τ − 1

)2 .
Writing the numerator as e(ε−µ)/τ−1 − 1 + 1, we observe that this is equal to

〈(δN)2〉 =
1

e(ε−µ)/τ − 1
+

1(
e(ε−µ)/τ − 1

)2 = 〈N〉+ 〈N〉2 ,

which is the desired expression.

Alternative way:

Since the only quantity in 〈N〉 that depends on µ is the distribution function f(ε, µ, τ),
we can take the derivative into the integral, as

〈(δN)2〉 = τ
∂

∂µ

∫
dεD(ε)f(ε, µ, τ) = τ

∫
dεD(ε)

∂f(ε, µ, τ)

∂µ
. (2)
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The derivative of the boson distribution function f(ε, µ, τ) =
(
e(ε−µ)/τ −1

)−1
is computed

as
∂f(ε, µ, τ)

∂µ
=

∂

∂µ

1

e(ε−µ)/τ − 1
=

1

τ

e(ε−µ)/τ(
e(ε−µ)/τ − 1

)2 .
Writing the numerator in the last expression as e(ε−µ)/τ − 1 + 1, we find that

∂f(ε, µ, τ)

∂µ
=

1

τ

[
f(ε, µ, τ) +

(
f(ε, µ, τ)

)2]
.

Plugging this result into (2), we obtain

〈(δN)2〉 =

∫
dεD(ε)

[
f(ε, µ, τ) +

(
f(ε, µ, τ)

)2]
.

Here, we note that in a single-orbital system, there is only one energy level ε0, so that
the density of states satisfies D(ε) = δ(ε− ε0). Then

〈(δN)2〉 = f(ε0, µ, τ) +
(
f(ε0, µ, τ)

)2
,

while on the other hand, 〈N〉 = f(ε0, µ, τ). Hence we find 〈(δN)2〉 = 〈N〉 + 〈N〉2, our
conclusion. Note that with this density of states, this reasoning is essentially equivalent
to the former solution.

2. (b) When the average number of particles in an orbital is high, we get enormous fluctuations
in the number. This is stark contrast to the fermionic case of 3He.

3. (a) One can describe a second order phase transition within the Landau free energy formalism:

f = αx2 + βx4 + γx6,

where γ > 0 for both first and second order transitions. In the case of the second order
phase transition, β > 0, while α changes the sign when the transition occurs.

The order parameter here is the superfluid density (it is zero in the normal phase and
finite in the superfluid phase).

The fact that the transition is second order also means that the second derivative of the
Gibbs free energy is discontinuous.

3. (b) For a first order phase transition, the first derivative of the Gibbs free energy is discon-
tinuous. In the Landau free energy f , α > 0 and β < 0 and a new minimum develops
at x0. However, at the phase transition point f(x0) = f(0). The point where the three
phases coexist is called the tricritical point.
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2 Infinite Range Ising Model

(a) (0.5) The solution is found by straightforward algebra

∑
{σi}

eβ(Jµ+H)
∑
i σi =

∑
{σi}

N∏
i=1

eβ(Jµ+H)σi

=
N∏
i=1

∑
σi=±1

eβ(Jµ+H)σi

=
N∏
i=1

(
eβ(Jµ+H) + e−β(Jµ+H)

)
=

N∏
i=1

{2 cosh [β(Jµ+H)]} .

(b) (0.5) The double sum can be written as

∑
i,j

σiσj =
∑
i

∑
j

σiσj =
∑
i

σi
∑
j

σj =

(∑
i

σi

)2

.

We can bring the partition function Z(β,H,N) into the form

Z(β,H,N) =
∑
{σi}

exp

{
βJ

2N

∑
i,j

σiσj + βH
∑
i

σi

}

=
∑
{σi}

exp

 βJ

2N

(∑
i

σi

)2

+ βH
∑
i

σi

 .

Now we insert the Gaussian identity,

e
βJ
2N (

∑
i σi)

2

=

∫ ∞
−∞

dµ√
2π
NβJ

exp

{
−NβJ

2
µ2 + βJµ

N∑
i=1

σi

}
,
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and obtain

Z(β,H,N) =
∑
{σi}

[
exp

{
βH

∑
i

σi

}

×
∫ ∞
−∞

dµ√
2π
NβJ

exp

{
−NβJ

2
µ2 + βJµ

N∑
i=1

σi

}]

=
∑
{σi}

∫ ∞
−∞

dµ√
2π
NβJ

exp

{
−NβJ

2
µ2 + β(Jµ+H)

N∑
i=1

σi

}
.

Subsequently we use the result of (2) to obtain

Z(β,H,N) =
∑
{σi}

∫ ∞
−∞

dµ√
2π
NβJ

exp

{
−NβJ

2
µ2 + β(Jµ+H)

N∑
i=1

σi

}

=

∫ ∞
−∞

dµ√
2π
NβJ

exp

{
−NβJ

2
µ2 +N log [2 cosh (β(Jµ+H))]

}
.

(c) (0.5) The average magnetization 〈m〉 can be found be differentiating the partition func-
tion with respect to the magnetic field H, explicitly we have

〈m〉 =
1

Nβ

∂ logZ

∂H
=

1

Nβ

1

Z

∂Z(β,H,N)

∂H

=
1

Nβ

1

Z

∂

∂H

∫ ∞
−∞

dµ√
2π
NβJ

exp

{
−NβJ

2
µ2 +N log [2 cosh (β(Jµ+H))]

} .
The derivative can be pulled through the integral. We need to calculate

∂

∂H
eN log[2 cosh(β(Jµ+H))] = N

2β sinh(β(Jµ+H))

2 cosh(β(Jµ+H))
e... = Nβ tanh(β(Jµ+H))e....

Now we put the above result into our expression for m and obtain the desired result

〈m〉 = 〈tanh(β(Jµ+H))〉 ,

where

〈. . .〉 =
1

Z

∫ ∞
−∞

dµ√
2π
NβJ

. . . exp

{
−NβJ

2
µ2 +N log [2 cosh (β(Jµ+H))]

}
.
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(d) (0.5) The magnetic susceptibility χ is given by

χ =
1

N

∂〈m〉
∂H

=
1

βN2

∂2 logZ

∂H2

=
1

βN2

[
1

Z

∂2Z

∂H2
−
(

1

Z

∂Z

∂H

)2
]
.

In the following we write x = β(Jµ+H). The second derivative of the partition function
w.r.t. H yields

∂2Z

∂H2
=

∫ ∞
−∞

dµ√
2π
NβJ

e−
NβJ
2
µ2 ∂2

∂H2
eN log[2 coshx]

=

∫ ∞
−∞

dµ√
2π
NβJ

e−
NβJ
2
µ2Nβ

∂

∂H
tanh(x)eN log[2 coshx]

=

∫ ∞
−∞

dµe−
NβJ
2
µ2√

2π
NβJ

Nβ
(
Nβ tanh2(x) + β − β tanh2(x)

)
eN log[2 coshx].

Putting this into the expression for the susceptibility we obtain

χ = β

(
〈tanh2(x) +

1

N
(1− tanh2(x))〉 − 〈tanh(x)〉2

)
.

In the limit that N →∞ we obtain the result

χ = β
(
〈tanh2(β(Jµ+H))

〉
−
〈
tanh(β(Jµ+H))〉2

)
.

(e) (1.0) The answer is not surprising since the fluctuation-dissipation theorem tells us
that the fluctuations in the magnetization indicate the systems response to an external
magnetic field. The fluctuations in the magnetic field are given by

δm2 =
〈
m2
〉
− 〈m〉2 ,

which is equal to χ/β.

(f) (0.5) The stationarity condition

∂

∂µ
F(µ,H) = 0,
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can be found by differentiating F , we obtain

∂

∂µ
F(µ,H) =

∂

∂µ

J

2
µ2 − 1

β
log [2 cosh(β(Jµ+H))]

= Jµ− 1

β

2βJ sinh(β(Jµ+H))

2 cosh(β(Jµ+H))

= Jµ− J tanh(β(Jµ+H)).

This gives the desired result.

(g) (0.8) The minimum of the Landau free energy shifts from zero to a nonzero value in
a continuous way upon lowering the temperature. This implies that it is a second order
phase transition.

(h) (0.7) We have the equation for the magnetization as a function of H given by

m(H) = tanh(β(Jm(H) +H)).

Now we differentiate this equation w.r.t. H and obtain

∂m(H)

∂H
=
(
1− tanh2(β(Jm(H) +H))

)
β

(
J
∂m(H)

∂H
+ 1

)
.

By putting the field to zero, H = 0, and rearanging terms we have

∂m(H)

∂H

∣∣∣∣∣
H=0

= β
1− tanh2(βJm)

1− βJ(1− tanh2(βJm))
.

We arrive at the susceptibility at zero field by realizing m = tanh(βJm), thus we have

χ0 =
1

β

∂m(H)

∂H

∣∣∣∣∣
H=0

=
1−m2

1− βJ(1−m2)
.

(i) (1.0) One way to find the critical temperature is solve the equation

∂2F
∂µ2

∣∣∣
µ=0

= 0

for temperature. One has
βc = cosh2(βcH)/J

which in the limit H = 0 is just kBTc = J .

In a second-order phase transition the susceptibility diverges at the critical temperature
so we could have expected this divergence. We see that the susceptibility diverges for
T = Tc = J/kB.
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(j) (0.5) We have seen that this is a second order phase transition, in a second order phase
transition the order parameter changes continuously from zero to a nonzero value at the
critical temperature. In this figure the horizontal axis is T/Tc and the vertical axis is the
magnetization per particle which is the order parameter for this system.

(k) (0.5) We again start with the equation

µ = tanh(βJµ),

and expand it around T = Tc, which yields

m =
mTc
T
− 1

3

(
mTc
T

)3

,

thus we find m2 ∝ (Tc − T ). The critical exponent is found to be ν = 1/2.
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