Final Exam- “Quantum Matter” (INS-371B)

June 25, 2012
Duration of the exam: 3 hours

1. Use a separate sheet for every exercise.

2. Write your name and initials in all sheets, on the first sheet also your address and
your student ID number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes. A list with some
useful formulas is given at the end of the exam sheet.

1 Metamagnetism in FeCl,

Magnets which undergo a first-order phase transition in an increasing magnetic field
are called metamagnets. There is a variety of metamagnets that exhibit tricritical
points. One that has been studied in detail is FeCl,. In this material, Fe?* ions
occupy sites on stacks of parallel two-dimensional triangular lattices separated by
the chlorine ions. Each Fe?* ion carries an effective spin of % The CI atoms do not
carry spin; for this reason we only concentrate on the Fe?* ions. In Figure 1, we
show the structure of the Fe planes, and we have left out the Cl atoms for clarity.

The Hamiltonian of the system is
1
H = —522.];5,5;5;,, (1)
PR

where S> is the z-component of the spin at site f, which can take positive or negative
values, S7 = 1 (i.e., it is an Ising variable). The exchange function, which describes
the coupling between different sites, is given by

J1 if ; and j’" are nearest neighbours in the same plane,
Jrn = —Jp if j and j’ are nearest neighbours in adjacent planes,
0 otherwise.

We assume that J; > 0 and J, > 0.

(a) (0.5) For zero temperature, describe the orientation of the spins within a
single plane. How are the spins in different planes oriented with respect to
each other?

The system is well described by a mean-field calculation. We define my = (Sf> as

the average spin per site (magnetisation) of the spins in sublattice A, and mp as
the average spin per site in sublattice B.

(b) (0.5) Show that in this mean-field approximation, the energy per site is

u=U/N = 1zoJomamp — 321J,(m} + m3),

1



Figure 1: Structure of the Fe ions in the lattice of FeCl,. The Cl atoms are situated
between the Fe planes, but have been left out of the figure for the sake of clarity. The
in-plane nearest-neighbour bonds are indicated by solid lines. The dashed lines show the
bonds of one particular Fe atom towards nearest-neighbour atoms in adjacent planes. On
the right, we have indicated the A and B sublattices.

where 2; is the number of nearest neighbours within one plane and z; is the
number of nearest neighbours in adjacent planes. Justify why you get the
prefactor % for the first term and i— for the second term.

(c) (1.0) Now, we want to derive the entropy of the system. The entropy per site
is given by S/N = s(ma) + s(mg), where s(ma) and s(mg) are the entropies
of mizing. In order to determine the function s, let us limit ourselves to s(ma)
(i.e., we restrict ourselves to the sublattice A). Compute the number of spins
up N,I in terms of the magnetisation ma and of the total number of spins
Na, and use that the total entropy is given by the logarithm of the number of
configurations with a given N},

Na
SA = kB log ( ) )
N}

where (..) denotes a binomial coefficient, to derive that

s(mA) = SA/NA (2)
= kg [log2 — $(1 4+ ma)log(1 + ma) — 3(1 — ma) log(1 — ma)] .

(d) (0.5) Using the results of (b) and (c), write down the free energy per particle
f (mA, mB)'



Now, if one defines the average magnetisation m and the staggered magnetisation
mg via

m=%(mA+mB), ms=%(mA—mB),

and one expands f to sixth order in my with coefficients depending on m (don’t do
this expansion yourself), one finds that

fo(m,m,) = co(m) + jea(m)m? + fea(m)mg + Les(m)ms, (3)
where
co(m) = Jamm® — T s(m), with oy, = 20J0 — 21 1,
kgT
co(m) = 1_—17;1._2 - any, with ay = 21J1 + 22J,
. ]CBT(l + 3m2)
) = 5y
cs(m) > 0,

where s(m) is given by eq. (2), simply by replacing m4 by m.

(e) (0.5) Do you recognise expression (3) for the free energy as something known?
How is it called? What can you describe with it? Discuss the region of validity
of the expansion.

(f) (0.5) There is a second-order phase transition between the paramagnetic (no
spin order) phase and the antiferromagnetic phase. Using equation (3), de-
termine the expression for the temperature T'(m) where the transition takes
place.

(g) (0.5) Can you also have a first order phase transition in this case? Justify
your answer.

Now, we apply a magnetic field in the z-direction. Therefore, the Hamiltonian gets
an extra contribution from the magnetic field, and becomes

H= —-% Z Z J;,;,S;S;, —h Z S;, (4)
i 7 i

where h measures the strength of the magnetic field.

(h) (0.5) What should happen with the spin configuration when the magnetic
field is very strong?

(i) (1.0) Argue that the free energy per particle f(m,ms) gets an extra contribu-
tion —hm compared to fy of equation (3). Explain that in order to find the
minima of the free energy for fixed m;, we have to find the solutions of h = %1%
(where fy is the free energy without magnetic field). Under the assumption
that we fix ms = 0, derive that m satisfies the transcendental equation

h— amm>

m = tanh ( "o (5)

Hint: log 1££ = 2 arctanh z.
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Figure 2: Phase diagram of a metamagnet. On the horizontal axis, we have the magneti-
sation m and on the vertical axis the scaled temperature kgT'/ay. The antiferromagnetic,
paramagnetic (normal), and mixed phases are indicated by AF, P, and mixed, respec-
tively. In the mixed phase, the material consists of regions which are antiferromagnetic
and regions which are paramagnetic (normal). Phase transitions of first order are in-
dicated by dotted curves, and those of second order by solid curves. Here, the phase
diagram is given for the case that 29t > 4.

We now incorporate the staggered magnetisation, which also reacts to the magnetic
field. By expanding the free energy in powers of mg as before, we now find (don'’t
do it yourself)

Fr(mo,ms) = co(mo) + 3ea(mo)m? + § [ca(mo) — 2¢(mq)] mg + §s(mo)me,

kgTmo

where mg = mg(T, h) is a solution of equation (5). The function ¢(mg) = e Py

describes the change to ¢4(mg) caused by the coupling of the staggered magnetisa-
tion to the magnetic field. Also cg(mmyp) is changed to &(mg), but we do not consider
its exact form here, since it is enough to consider that it is positive.

The phase diagram for the magnetisation m(T") versus temperature is given in
Figure 2.

(j) (0.5) There are first-order phase transitions between the paramagnetic phase
(P) and the mixed phase, and between the antiferromagnetic phase (AF) and
the mixed phase. How can one calculate the transition temperatures T'(m) of
these phase transitions? Only describe the steps that have to be done, without
calculating explicitly.

(k) (0.5) For the first-order phase transition, draw sketches of the free energy:
(i) below the transition temperature, (ii) at the transition temperature, (iii)
above the transition temperature. Indicate clearly the differences between the
three sketches.



(iv) Draw also a qualitative sketch of the order parameter as function of the
temperature and indicate clearly the transition temperature in your sketch.

(1) (0.5) Repeat the steps of part (k), but now for a second-order phase transition.

(m) (0.5) The material FeCl, is known to exhibit a tricritical point if % > 3.

What is a tricritical point? For 0 < f:‘—j’z- < %, the phase diagram changes

and there is a critical point, which is similar to the critical point in the phase
diagram of water, where the transition line between the liquid and gas phases
terminates. Discuss what happens around a critical point in terms of a possible
symmetry change of the different phases.

2 The Importance of a Minus Sign

(a) (0.5) Recalling that the partition function for non-interacting particles is

given by
Z=1[>_explniB(p — E)]
i {ns}

( _—1(81nZ
m) =g 3E,-)’

derive the Fermi-Dirac and Bose-Einstein distribution functions.
(b) (0.5) Plot both distributions as a function of B(E — p).

(c) (0.5) Discuss the physical consequences of the plus or minus signs in the
distributions.

and that

(d) (0.5) Discuss the role of the chemical potential 1 in both cases.
(e) (0.5) What happens in the limit S(E —p) > 17

Formulas
e Maxwell-Boltzmann distribution: g(e)  exp(—¢e/kgT)

Planck distribution: f(FE) = 6—5'51'_—1

Fermi-Dirac and Bose-Einstein distributions: f(E) = , Where the sign +

stands for fermions and the sign — stands for bosons.

1
eP(E-p)t]

. . —ar2
o Gaussian integral: [ dre™%" = /T

Stirling’s approximation: log(n!) = nlogn —n






