Final Exam- “Quantum Matter” (NS-371B)

July 1st 2013
Duration of the exam: 3 hours

1. Use a separate sheet for every ezercise.

2. Write your name and initials in all sheets, on the first sheet also your address and your
student ID number.

3. Write clearly, unreadable work cannot be corrected.

4. You are NOT allowed to use any kind of books or lecture notes. A list with some useful
formulas is given at the end of the ezam sheet.

1. Heat capacity of liquid *He

Liquid “He, which are bosonic atoms, becomes superfluid below a temperature of 2.17 K. Just
as in a crystal, the low energy excitations of liquid *He are sound waves, whose quanta are the
phonons. However, in liquid *He there is also another type of elementary excitation called the
roton, see Figure 1. The dispersion relations for the phonons and rotons are, respectively,
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WD
A AL (p pO)
24ty

€& = )
where c) is the sound velocity, A is the energy gap of the rotons, u, is the effective mass of the
rotons, and p = Ak is the momentum of the atoms. As we have seen in crystals, the low energy
excitations determine the behaviour of the thermodynamic quantities, such as the specific heat.
In this sense liquid ‘He can be described as an ideal gas of phonons and an ideal gas of rotons.

1. (1.0) Let us first concentrate on the phonon gas. Calculate the temperature dependence
of the free energy of the phonon gas, which is given by the free energy of the ideal Bose
gas

d®p
F= —kBT/]n(l +TL)W,
where n = 1/(eP¢—1) is the Planck distribution. Hint: write it as a dimensionless integral

and extract the temperature dependence without solving the integral explicitly. Recall
that d®p is an infinitesimal volume element of a sphere.

2. (1.0) Calculate the temperature dependence of the entropy and specific heat of the phonon
gas.
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Figure 1: Spectrum of “He, with energy (vertical axis) versus momentum (horizontal axis),
showing the phonon and roton excitations.

3. (1.0) Consider now the roton gas. Argue that if A > kgT the Maxwell-Boltzmann
distribution can be used for the rotons instead of the Bose-Einstein distribution function.
Furthermore, show that the free energy of the ideal Bose gas reduces to the free energy
of a Boltzmann gas

F~ —kgT / e dr
s B B (27T h) 3
where ng is the Boltzmann distribution.

4. (1.0) Calculate the temperature dependence of the free energy of the roton gas by ap-
proximating the integral assuming that pp > "% Notice that the main contribution

from the Gaussian term comes from p = po. Show that

dkgT _
F = —(7’”—:;)-3—6 A/kBTpg\/ 27T[,L1-kBT.

As before, you could then determine the entropy and the specific heat, but you don’t need
to do it here.

2. Infinite Range Ising Model

We consider an Ising model in which all spins o; = %1 interact with all other spins with
interaction strength —J/N, where N is the number of spins in the system. In the presence
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of a magnetic field H, the partition function is given by

Z(B,H,N) = Zexp{QNZa,a]+ﬁHZa,}, (1)
{0',}
where ., denotes the sum over all of the 2V spin configurations of the system.
{0'.}

(a) (0.5) Show that

Dty H {cosh [B(Ju+ H)]}, (2)
{oi}

where 4 is some auxiliary field which we need later.
(b) (0.5) Using the Gaussian identity,

2 - N
exp{g—;é (Zai) }=/_°o \/Uf::%em{—guuwu;m}, (3)

and equation (2), show that equation (1) can be written as

Z(B,H,N) = / \/_ exp {—%u + Nlog [2 cosh (B(H + ,uJ))]} (4)

The magnetization m and susceptibility x can be found from equation (4) by taking
derivatives with respect to the magnetic field H.

(c) (0.5) The average magnetization is given as

(m) = 75 = (/1 H ), )
where the average is defined as
Joib)) = —/ {—N—'BJ,M + N log [2cosh (B(Ju + H))]} e ((6))
\/ NﬁJ

Calculate the function f(u, H, B).
(d) (0.5) Calculate the susceptibility in the limit N — co. The susceptibility is defined

to be
_ 19(m)
" N 8H



Show that it is given by

x = B [(tanh?(8(Ju + H))) — (tanh(B(Ju + H)))*] .

Hint: the limit N — oo should be taken in the last step.

() BONUS POINT (1.0) Could you have expected the form you found for the
magnetic susceptibility?

It is useful to define the function F(u, H),
J 1
]:(/'l" H) = 5/"’2 - E log [2 COSh(IB(‘]:u + H))] ’ (7)

such that o g
26, H,N) = [ e oz, ®)
—00 2m
\/ NBJ
In the thermodynamic limit, N — oo, the stationary phase method applied to Z becomes
exact (for this model). The condition for stationarity is

0
6_/‘]:(/" H)=0. (9

The minima p;, where ¢ € {1,...,n} and n is the number of minima, found by the above
condition give the dominant contributions to the partition function. Since for this model
system the stationary phase method is exact in the thermodynamic limit N — oo, we
can write the partition function as

n
Z(B,H,N) = Ze_ﬂN}-(’“’H).
i=1

Note that we do not have to perform the integration over u anymore! Moreover, if there
is one absolute minimum po, then in the thermodynamic limit the average magnetization
will correspond to m = wo. This means that the original auxiliary field y, is actually the
magnetization.

(f) (0.5) Show that the stationarity condition in equation (9) gives
p = tanh [B(Ju + H)] (10)

(g) (0.8) Figure 2 shows the Landau free energy versus u. What is the order of this
phase transition? Justify your answer.



'I
)
)
i‘ — T,
3
)
)
)
)
- 11,
‘I
)
)
)
Tt
o~
<
G
3
b, !
i 5
\ ;
| ;
! - :
L) P
Y Tere
) 5
kY
kY

Figure 2: The Landau free energy versus u for H = 0.
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Figure 3: Something versus something. ..



(h) (0.7) We now want to calculate the susceptibility at zero field, H = 0, using the
stationary phase method. Compute the susceptibility by differentiating equation
(10) w.r.t. H, and show that it yields

_ 10w _  1-m
X0 = BoH o~ 1= BJI(1 = m?)’

where the magnetization satisfies m = tanh(8Jm). Hint: On both sides of equation
(10) we have that the auxiliary field depends on the magnetic field, u = u(H).

For T' > T, there is only one minimum g which corresponds to zero magnetization m = 0.
This state is called the paramagnetic phase. This means that the susceptibility is given
by

ara __ ksT

0 T kgT-J’
(i) (1.0) Calculate the critical temperature for this phase transition at H = 0. Could
you have anticipated the behavior of the susceptibility at T, by looking at figure 27

(J) (0.5) Knowing that figure 3 is in relation with figure 2, identify what is being
plotted in the horizontal and vertical axis in figure 3. Explain your answer.

(k) (0.5) Close to the critical temperature T, we can expand tanh(z) ~ z — z3/3. Give
the value of the critical exponent v, which is defined to be

TST. T.—T\"
l‘l' T i
End

Formulas

e Maxwell-Boltzmann distribution: g(e) ox exp(—¢/kpT)
e Gibbs distribution:

_ exp{B(uN; — E;)}
P, = A

Z = ZGXP{B(MN, i E,)}

e For the different ensembles:
Q= ePT5, Z=e¢PF,  Z=¢8%

where S is the entropy, T is the temperature, 8 = (kgT)™!, F = —kgT'In Z is the
Helmholtz function, and ®g = —kgT'In Z = F—uN = —pV is the grand-potential.
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e Recall the usual relations from quantum mechanics:

E = hw, p = hk, E =p*/2m

e Photons:
w = ck, k=2r/\, c= v

E = hkc = pc

e Planck distribution: f(E) = ;ﬁ'Ele

e Fermi-Dirac- en Bose-Einstein distribution: InZ = +£,In (1 £ ef#+-E2), with
f(E)= ;TE—I';E’ where the sign + stands for fermions and — for bosons.

e Polylogarithm function Li,(z):

o0 n—1
|ty = L), Lin() = (),

where ( is the Riemann zeta-function, and I'(n) = (n — 1)! for n a positive integer.

Lil(z)=ln<1_1_z)

. . Cm2
e Caussian integral: [T dge—o* = /T
—00 a

e Stirling approximation: log(n!) = nlogn —n
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