Quantum matter (Block 4, 2014/15)

Dr. D. Schuricht P. Kristel, N. Menezes Solutions: Retake exam (70 points)

21 July 2015

- Use a separate sheet for every exercise.
- Write your name on each sheet, on the first sheet also your student ID.
- Write clearly, unreadable work cannot be corrected.
- Except in exercise 1, give the motivation, explanation and calculations leading up to each answer and/or solution.
- Do not spend a large amount of time on finding (small) calculation errors. If you suspect you have made such an error, point it out in words.

1. Conceptual questions (3 points each = 15 points)

Answer the questions below by a few sentences, a sketch, a formula or the like.

- (a) Sketch the two-dimensional triangular lattice and its Wigner-Seitz cell.
- (b) How is the temperature dependence of the specific heat of a three-dimensional system of acoustic phonons at low and high temperatures?
- (c) State the Bloch theorem.
- (d) Briefly describe the qualitative difference between a paramagnet and a ferromagnet.
- (e) Describe the difference between type-1 and type-2 superconductors.

2. Fermions in three dimensions (5+7 points = 12 points)

Consider a gas of non-interacting, spinless fermions in the three-dimensional volume $V=L^3$. The fermions possess the dispersion relation $E(\vec{p})=c|\vec{p}|^{\alpha}$, $\vec{p}=(p_x,p_y,p_z)$, $\alpha>0$. The chemical potential vanishes.

(a) Calculate the density of states.

Hint: Introduce spherical coordinates.

(b) Using this show that the specific heat satisfies $C \propto T^{\delta}$ and determine δ .

3. Boltzmann transport equation (6+7+7 points = 20 points)

Consider electrons with dispersion relation $E(\vec{k}) = \hbar^2 \vec{k}^2/(2m)$ in a three-dimensional metal at temperature T. In the presence of an electric field \vec{E} currents will flow. We describe this using the Boltzmann equation for the non-equilibrium distribution function

 $g(\vec{k},t)$; the system is homogeneous so we can neglect the spatial dependence of g. In the relaxation-time approximation the Boltzmann equation reads

$$\left(\frac{\partial}{\partial t} - \frac{e\vec{E}}{\hbar} \cdot \vec{\nabla}_{\vec{k}}\right) g(\vec{k}, t) = -\frac{1}{\tau} \Big[g(\vec{k}, t) - f_0 \big(E(\vec{k}) - \mu \big) \Big], \tag{1}$$

where e is the electron charge, τ the relaxation time, μ the chemical potential and $f_0(x) = (e^{x/(k_BT)} + 1)^{-1}$ the Fermi-Dirac distribution.

(a) Consider the steady state and show that the solution of (1) to linear order in \vec{E} is given by

$$g(\vec{k},t) = f_0 \left(E(\vec{k}) - \mu \right) + \frac{e\tau\hbar}{m} f_0' \left(E(\vec{k}) - \mu \right) \vec{E} \cdot \vec{k}, \tag{2}$$

where $f_0'(x) = \frac{\mathrm{d}}{\mathrm{d}x} f_0(x)$.

- (b) Derive an integral representation for the energy conductivity $\sigma_{\rm E}$ defined via $\vec{j}_{\rm E} = \sigma_{\rm E} \vec{E}$ with the energy current density $\vec{j}_{\rm E}$.
- (c) Show that if electrons were classical particles and τ is independent of temperature, the energy conductivity at $T \to 0$ becomes linear in the temperature, $\sigma_{\rm E} \sim T$.

4. Interacting spins (2+2+4+5+8+2 points = 23 points)

Consider two coupled spin-1/2's $\vec{S}_{1,2}$ subject to an Ising interaction and a magnetic field $\vec{B} = B\vec{e}_z$

$$H = J S_1^z S_2^z + \mu_0 B (S_1^z + S_2^z), \quad J > 0.$$
 (3)

- (a) On which Hilbert space does the Hamiltonian act? What is the Hilbert-space dimension?
- (b) Which components of the total spin $\vec{S}_{tot} = \vec{S}_1 + \vec{S}_2$ are conserved?
- (c) Calculate the energies and eigenstates of the Hamiltonian as a function of J and B.
- (d) Calculate the partition function Z, the free energy F and the magnetisation M. Use this to show that the susceptibility is given by $\chi = \hbar^2 \mu_0^2 / [k_{\rm B} T (1 + e^{\hbar^2 J/(2k_{\rm B} T)})]$.
- (e) Derive the low- and high-temperature behaviour of the susceptibility obtained above. What defines the low- and high-temperature regimes? Sketch the susceptibility as a function of temperature.
- (f) If one considers spin-1's instead, how does the susceptibility behave as $T \to 0$?