EXAM 2 SOFT CONDENSED MATTER June 26th, 2012

• This is an open book exam. You can use the syllabus and the handouts provided by the lecturers.

• Use a new sheet of paper for each of the problems.

• Constants:

Boltzmann:

 $k_B = 1.38 \times 10^{-23} \text{ J/K}$

vacuum permittivity:

 $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$

Avogadro's number:

 $N_{\rm Av} = 6.022 \times 10^{23} \text{ mol}^{-1}$

elementary charge:

 $e = 1.602 \times 10^{-19} \text{ C}$

1. The Flory-Huggins expression for a polymer blend is given by

$$f_m(\phi) = \frac{1}{N_A} \phi \ln \phi + \frac{1}{N_B} (1 - \phi) \ln(1 - \phi) + \chi \phi (1 - \phi)$$

- a. Indicate which terms in the expression are of entropic and which are of energetic origin.
- b. What is the definition of the chi-parameter (χ) in this case and on which parameters does it depend?
- c. Can you give qualitative arguments (i.e. without calculating anything) whether a blend will mix easily or not?
- d. Explain why the critical point is determined by the conditions

$$f_m$$
 " $(\phi_{cr}) = 0$

$$f_m " (\phi_{cr}) = 0$$

e. Use these conditions to calculate the value of the critical volume fraction ϕ_{cr} and critical chi-parameter (χ_{cr}) and discuss the result in case (a) $N_B = N_A$ and (b) $N_B = 1$.

2. The standard-chemical potential of a surfactant molecule in a micellar aggregate of size *n* in principle depends on the occupied area per surfactant molecule, *a*. A primitive way to take that dependence into account is by writing

$$\overline{\mu}_{n}^{0} = \gamma a + k / a, \qquad (1)$$

where the chemical potential here is related to the one defined above Eq. (2.10)—in chapter 6 of the syllabus by $\overline{\mu}_n^0 = \mu_n^0 / n$.

- a. Provide (a) possible interpretation(s) of the two terms in $\overline{\mu}_n^0(a)$.
- b. Show that the optimal area per molecule, a_0 , is given by

$$a_0 = \sqrt{k/\gamma} \tag{2}$$

Provide an interpretation of this result. *Hint*: consider the function $\overline{\mu}_n^0(a)$.

c. Show that Eq. (1) can be written as

$$\overline{\mu}_n^0 = 2\gamma a_0 + \frac{\gamma}{a} (a - a_0)^2.$$
 (3)

Hint: make use of Eq. (2) to write the chemical potential of a surfactant molecule at optimum headgroup area as $\overline{\mu}_n^0(a_0) = 2\gamma a_0$.

d. Show that the fraction of molecules with headgroup area a relative to the optimal area a_0 is approximately given by

$$\frac{x_a}{x_{a_0}} = exp\left(\frac{-\gamma}{a}(a-a_0)^2 / k_B T\right)$$
 (4)

What assumption(s) have you made?

- 3. Consider a mixture of two polymer species with radius of gyration R_1 and R_2 for species 1 and 2, respectively.
 - a. Calculate the Helmholtz free energy $F(N_1, N_2, V, T)$ of such a binary mixture consisting of $N_1 \gg 1$ and $N_2 \gg 1$ polymer coils in a volume V and at a temperature T under the assumption that the polymers can be treated as ideal point particles. Calculate also the pressure p, the chemical potential μ , and the internal energy E of this mixture.

The equation of state of a colloidal suspension can be approximated by

$$\frac{p}{k_B T} = \rho - \frac{a}{k_B T} \rho^2 + b^2 \rho^3 \tag{1}$$

where $\rho = N/V$ is the number density, p the pressure, T the temperature, N the number of particles, V the volume, k_B Boltzmann's constant and a,b > 0 phenomenological constants.

- b. Sketch the equation of state, i.e., p as a function of ρ , for sufficiently high and low temperature. Do you expect gas-liquid coexistence at high temperature and at low temperature? Motivate your answer.
- c. Calculate the critical pressure p_c , critical density ρ_c , and critical temperature T_c .
- d. What are the conditions for phase coexistence? Describe how gas-liquid equilibrium coexistence can be determined from $\mu(\rho,T)$ and $p(\rho,T)$ for $T < T_c$?

The chemical potential $\mu(\rho,T)$ can be derived from the equation of state $p(\rho,T)$ using thermodynamic integration.

e. Show that the chemical potential reads

$$\mu(\rho,T) = k_B T \log(\rho \Lambda^3) + \int_0^\rho \frac{1}{\rho'} \left(\frac{\partial(p - \rho' k_B T)}{\partial \rho'} \right)_T d\rho'$$

where Λ denotes the thermal wavelength.

f. Calculate the chemical potential $\mu(\rho,T)$ using the equation of state (1).