Exam "Foundations of Quantum Mechanics" 31 January 2012, 14.00-17.00 p.m.

Please write your name and registration number on every sheet!

- 1. According to Bohr one cannot assign properties to a physical system independently of the measuring context. Changing the measuring context also implies changing the properties that can be attributed to the measured system.
 - a. Illustrate these "Copenhagen" ideas by an analysis of the double-slit experiment.
 - b. Discuss the relation between Bohr's ideas and the Kochen-Specker theorem.
- 2. Suppose that an object system O enters into an interaction with a measuring device M that has been designed to measure observable A.
 - a. Explain how this measurement interaction (assumed to be ideal) should be described according to von Neumann.
 - b. Explain why and how the final state of this interaction gives rise to the "measurement problem".
 - c. In what way is this problem accommodated by the standard postulates of quantum mechanics?
 - d. Discuss the pros and cons of this "standard solution" of the measurement problem.
- 3. In a variation on the Einstein-Podolsky-Rosen thought experiment one considers two particles, L and R, respectively, that are in the following total state:
 - $|\Psi\rangle=1/\sqrt{2}$ { $|a\rangle|b\rangle+|c\rangle|d\rangle$ }, in which $|a\rangle$ and $|c\rangle$ stand for two non-overlapping states of L that are localized at different positions in our laboratory, and $|b\rangle$ and $|d\rangle$ two non-overlapping R states localized at very distant positions. We are going to measure an observable of L of which $|a\rangle$ and $|c\rangle$ are eigenstates.
 - a. If $|\Psi\rangle$ is the total state, what are the states of L and R, respectively (before measurement)?
 - b. How would you describe the described measurement mathematically?
 - c. Explain Einstein's argument for hidden variables in this context.
- 4. Einstein's hopes for a local hidden variables theory were (with hindsight) destroyed by Bell's theorem.
 - a. Explain what Bell's theorem says and exactly what assumptions are made in its derivation.
 - b. Can you think of a formulation of Bell's theorem that directly applies to the situation described in 3? Motivate your answer.
- 5. Try to give definitions of the following terms.
 - a. Complementarity
 - b. Pure state
 - c. Density operator
 - d. Contextuality
 - e. Hidden variable