Dynamical Oceanography: Final (04-06-2009)

Good Luck!
1. (30 points)

Consider a square ocean basin at mid-latitudes (Fig. 1). The basin has a
constant depth D and the flow is forced by a wind stress field with a spatial
pattern T = (7%, 7¥,0).
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Figure 1: Sketch of the model domain.

Assume that the density p of the ocean water is constant, that the result-
ing flow is stationary and that effects of the deformation of the free surface
can be neglected. In a quasi-geostrophic theory on the F-plane, the dimen-
sionless potential vorticity equation for the geostrophic streamfunction 1,
on the flow domain (z,y) € [0, 1} x [0, 1], is given by
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a. (5)
Provide the physical interpretation of the quantity &y;.

Suppose from now on that the effects of lateral friction and inertia can
be neglected over the whole flow domain. The wind-stress field has the form

”=—$cosk7ry; V=0 (3)

for certain integer & > 0.

b. (10}
For k = 2 in (3), determine the Sverdrup solution (x,y) that satisfies the
kinematic boundary condition at the eastern boundary.

c. (10)
For k = 2 in (3), determine the Stommel western boundary layer solution
Ps(A,y), where
T
A= —
és/L

d. (5)
Determine the values of & in (3) for which the total input of vorticity (by
the wind stress) over the basin is zero.



2. (30 points)

To investigate the time-dependent behavior of the midlatitude ocean
circulation, a two-layer model is considered on a horizontally unbounded
B—plane. In absence of flow, the layer thicknesses and densities are given by
H; and p;, i = 1,2, and the density difference Ap = pa — p; is much smaller
than the reference density pp; the reduced gravity g’ = gAp/po.

The interface between both layers, the thermocline, is described by z, =
—h, = D h, where D = H + Hs is the total depth of the layer (Fig. 2).
The bottom of the ocean is flat and both lateral and bottom friction can
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Figure 2: Sketch of the two-layer maodel.

be neglected. In this case, the dimensionless equations for the unforced,
nondissipative two-layer model become

2LV 4 By + Pt - )] = 0 (4n)
Dy
d—;[V2¢2+ﬁy—F2(¢2—¢1)] =0 (4b)
with
Di_ 0,0, 0
E = a+u,a+v,ay (5&1)
_o . o
ui—_a' 3 = Br (5b)
ho= 5
= 34-#(101-'1.02) (5c)
Ul f2L2 2r2 Uf L
A== y= (6)

g’Hl 1 2—g,H21ﬂ_ g,D



a. (6)
Give the expression of the internal Rossby deformation radius Lp,, based
on the first layer, and give a physical interpretation of this length scale.

The velocity field (1), 1) with

Ui(y) = ~Uy ; da(y) = 791(y) (7)

where Uy and - are constant, is a solution of the equations (4), no need to
check this.

b. (8)

Determine the thermocline shape ! for the solution (7) with v = 1/2 and
describe the physical processes causing the meridional dependence of the
thermocline.

c. (8)
Answer and explain: can the flow in (7) become unstable through (i) barotropic
instability and/or (ii) baroclinic instability?

Next, small amplitude motions are assumed on the solution (7) and wave
solutions are considered.

d. (8)
Determine for -y = 1 the dispersion relation of the baroclinic mode.



3. (30 points)

A researcher performs a simulation with an idealized coupled ocean-
atmosphere model of El Nifio/Southern Oscillation (ENSO) covering the
Tropical Pacific domain (from about 15°S to 15°N). Using scales

t, = -{J—t i xe =Lz oy, = A, (8a)
Co
h, = Hh; u.=cou; v, = %cov, (8b)

¢ = VGH; A= \/;—_" (8c)

the dimensionless ocean equations describing the free waves on a flat ther-
mocline with equilibrium depth H in the reduced-gravity ocean model are:

Ou ah
Erim + 9 = 0, {9a)
Ag gaU ah _
(f) E+yu+3_y = 0, (Qb)
dh du v
N + 7z + 8_y = 0, (9c)

a. (10)

There is only one type of free wave solution with v = 0. Determine the
dispersion relation of these waves and determine their (meridional) spatial
pattern.

The dimensional sea-surface temperature equation is given by

ar, ~ T, — Tou(he)
Bt* + U, - VT& — ET(Tt TD) W H

(10)

where er is a damping coefficient to an equilibrium temperature T and
Ts.(h.) is the sub-surface temperature.

b. (5)

Sketch a reasonable shape of the function T;.(h.) and motivate your answer.

c. (5)
Describe the thermocline feedback with help of the sea surface temperature
equation (10) above.



In Fig. 3, results of the simulation are plotted over nearly half an ENSO
cycle. Panel {a) contains the pattern of the sea surface temperature and
panel (b) that of the thermocline depth anomaly (with respect to the depth
H).
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Figure 3: (a) Sea surface temperature anomaly and (b) Thermocline depth anomaly
for half of an ENSO cycle. The time in the pictures is relative to a period of 3.7
years (in this model).

d. (5)
Explain the physics of the eastern thermocline changes {as in Fig. 3b) be-
tween the times ¢t =0 and ¢t = 7/16.

e. (8)
With reference to both panels in Fig. 3, briefly describe the ENSO mecha-
nism over the half period of the ENSO cycle shown.



