Dynamical Oceanography: 22-06-2017

Much success!

1. (30 points)

Consider a square ocean basin at mid-latitudes (Fig. 1) as a model of the
North Atlantic basin. The basin has a constant depth D and the flow is
forced by a wind stress feld with a spatial pattern T = {(v%,7¥,0).
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Figure 1: Skeich of the model domain.

Assume that the density p of the ocean water is constant and that the re-
sulting flow is stationary. In a quasi-geostrophic (QG) theory on the 8-plane,
the steady dimensional vorticily equation for the geostrophic streamfunc-
tion 4, on the flow demain (z,y} € [0, L] x [0, L], is given by
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a. (4)
Give an expression of the dimensional QG potential vorticity (PV) in this
model. Under which conditions is PV conserved?

b. (6)

Consider the case that the effects of inertia and bottom friction can be ne-
glected over the whole flow domain and that Ay = 0. In this case, the Aow
domain can be divided into two regions where different dominant vorticity
balances hold. Sketch the different domains and provide the vorticity balance
in each domain.

Suppose from now on that the effects ol lateral Iriction and inertia can he
neglected over the whole flow domain (there is bottom friction!) and that
Ao = 0. Assume furthermore that the wind-stress field has the form
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where o € [0,1] is a real parameter.

c. (10}
Determine the dimensional Sverdrup solution #{x, y) that satisfies the kine-
matic boundary condition at the eastern boundary.

d. (G)

Considér the case o = 0. Explain with the help of PV budgets why the
compensating return flow {with respect to the Sverdrup fAow) can only occur
on the western side of the basin and not on the eastern side.

e. (4)

For a range of o there exists a latitude yp € (0, L) for which the meridional
volume transport of the western boundary current is zero. Determine the
dependence of this latitude yp on o.



2. (30 pdints)

Consider a flow in a zonal channel with constant depth D and width L,
with L == D on a g-plane with 8y — 45°N. The horizontal velocity field is
v = (u,v), the pressure p and the density p (see Fig. 2).

Figure 2: Sketch of the flow domain in the zonal chunnel,

Assume that ihe flow can be well-described by the dimensionless strat-
ified quasi-geostrophic model as in the Appendix, with a constant Burger
number 5. Under a certain wind forcing, a steady flow is realized with di-
mensionless velocity field (on the domain y € [-1,1], z € [-1,0])

aly,z) = U(l—nP)z+1) (32)
i{y,2) = 0 (3b)
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where [f > 0 is a constant.

a. (8)
Determine and sketch the three-dimensional steady density field p(z, y, 2} for
the flow (3) in the case = 0.

h. (8)

Can the flow in (3) for the case 7 = 1 become unstable to (i) barotropic
instability or (ii) baroclinic instability? Provide a short description of hoth
instability mechanisms and use that to clarify your answer to (i) and (ii)

ahove.

In the zonal channel, the meridional structure of a free Rossby wave is of
the form cosEn + 1/2)7ry} forn =0,1,2,...

c. (10)

Determine for I/ = 0, the zonal phase velocity of free barotropic Rossby
waves in this model. Shortly describe the mechanism of propagation of the
n = 0 barotropic Rossby wave.

d. (4)
Describe the adjustment process for the case = 0 when the wind forcing is
changed such that U suddenly becomes U//2.



3. (30 points)

In the equatorial Pacific, the depth of the 20°C isotherm is usually taken
as the thermocline depth. in Fig. 3a, a time-longitude diagram of the equato-
rial (average over [2°S, 2°N|) thermocline anomalies is shown over the period
June 2013- June 2014. In Fig. 3b, the equatorial temperature {lower panel)
and the anomalies {upper panel) are plotted for June 17.
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Figure 3: (u) Time-lonptude diagram of equatorial thermocline anomalies (m)
over the period June 2013 - June 2014. (b) Equaloriel temperature (lower panel)
and lemperaiure anomalies {upper panel) for June 17.

a. (5)
Give a short explanation for the shape of the thermocline in the lower panel
of Fig. 3b.

A student wants to understand the eastward propagation of the ther-
mocline anomalies as seen in Fig. 3a. The dimensional ocean equalions
describing small amplitude motions on a flat thermocline with equilibrium

depth H in a reduced-gravity ocean model are

du h
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where (u, v) is the horizontal velocity anomaly and A the thermocline anomaly.

b. (10)

Determine the dimensional solution {u, v, h) for the wave which causes this
eastward propagation, derive its dispersion relation and explain why this
wave cannol propagate westward.

The dimensional sea-surface temperature equation is given by

ar T-T,
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where er is a damping coeflicient to a constant radiation equilibrium tem-
perature Ty and T is the sub-surface temperature.

c. (4)
Explain where the negative subsurface temperature anomalies in equatorial
Pacific {at about 150 m depth) in the upper panel of Fig. 3b originate from.

d. (5)
Give a description of the thermocline feedback with help of the sea surface
temperature equation (5) above.

e. (6)
Explaid the occurrence of the strong eastward propagating SST anomalies
over the period February 2014 to May 2014.



Appendix
The stratified quasi-geostrophic model on the F-plane

The O{1) equations are

v = -ggo (6a)
W = -g—zu (6b)
0= -2 (60)

The quasi-geostrophic vorticity equation (with ¥ = p°) is
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The boundary condition for ¢ at z = -1 is
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and the boundary condition at the ocean-atmosphere interface z = 0 is
a d a.dy ar
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