Department of Physics and Astronomy, Faculty of Science, UU. Made available in electronic form by the \mathcal{T}_{BC} of A–Eskwadraat In 2005/2006, the course NS-MO429 was given by R.S.W. van de Wal.

Climate Dynamics (NS-MO429) 2 februari 2006

Question 1

Let us adopt a single slab model of the earth-atmosphere system (see the figure). The parameter, α , is the albedo of the earth. The parameter, ϵ , is the emissivity of the atmosphere.

- a) Derive an expression for the bolometric temperature (also called the emission temperature, T_e) of the earth using Stefan-Boltzman's law, which states that the radiation emitted by a black body is proportional to the fourth power of the temperature of the emitting surface (constant of proportionality is $\sigma = 5.67 \ 10^{-8} \ \mathrm{W m^{-2} K^{-4}}$). Assume that the earth is a black body.
- b) Show that, in radiative equilibrium,

$$T_{a0} = \left(\frac{\epsilon}{2 - \epsilon}\right)^{\frac{1}{4}} T_e$$

where the subscript 0 denotes the equilibrium state.

- c) If the emissivity, $\epsilon=0.5$, show that in radiative equilibrium $\frac{T_{a0}}{T_{g0}}=\frac{1}{\sqrt{2}}$
- d) Now, suppose that for some reason the atmospheric temperature is disturbed slightly away from the radiative equilibrium such that $T_a = T_a \Delta T_a$, with $\Delta T_a \ll T_{a0}$. Derive an approximate expression ¹ for the time-rate of change of ΔT_a in terms of T_{a0} and ΔT_a . Assume that $\frac{c_p p_s}{g}$ is the thermal capacity of an atmospheric column of unit cross-sectional area. Here p_s is the pressure at the earth's surface; c_p is the specific heat at constant pressure (= 1004 J K⁻¹kg⁻¹), and q is the acceleration due to gravity.
- e) According to the expression derived in (d) the temperature perturbation decays exponentially towards zero with a timescale called the radiative equilibrium timescale. Give an estimate in days of this timescale for the earth's atmosphere.

Question 2

Stable isotopes are widely used in paleoclimatology.

a) Explain why stable isotopes are used in paleoclimatology.

¹Use the following approximation of Taylor's formula:// $f(x) \cong f(x_0) + (x - x_0)f'(x_0)$

- b) Explain the difference in the physical interpretation of marine benthic isotopes and isotopes in an ice sheet?
- c) Explain how the benthic isotopes and ice core isotopes are related and provide typical values for the present-day climate and during the Last Glacial Maximum.
- d) Sketch the $d^{18}O$ value over the last 50 kyr for an ice core from Antartica, one from Greenland an a marine benthic core and explain the differences.

Question 3

What dynamical process is taken into account (in parametrized form), next to in- and outgoing radiation, in the one-dimensional energy-balance model introduced first by Budyko and Sellers?

Question 4

Describe in words the global thermohaline circulation and explain what role it plays for the climate

Question 5

Estimate from the figure below the initial and final density of a kilogram of water that starts in the tropics with a temperature of 28 °C and a salinity of 35% and flows on the surface in the Gulf stream to the Norwegian Sea, where it arrives with a temperature of -1 °C. Assume that the water conserves its salinity on its way and loses heat by sensible heat transfer.

Contours of seawater density anomalies $(\rho_t - 1000 \text{ kg m}^{-3})$

Question 6

Explain what is meant by a Heinrich event and give a possible mechanism that involves the ocean circulation. What can be learned from the (simple) Stommel box model to explain Heinrich events?