## Instituut voor Theoretische Fysica, Universiteit Utrecht

# FINAL EXAM QUANTUM FIELD THEORY

30 January, 2014

- The duration of the exam is 3 hours.
- The exam is closed-book.
- Usage of a calculator and a dictionary is allowed.
- Use different sheets for each exercise.
- Write clearly, unclear writing will not be evaluated.
- Write your name and initials on every sheet handed in.
- Divide your available time wisely over the exercises.

### Problem 1 (15 points)

- 1. Show that for a vector field  $A_{\mu}(x)$  the reality condition  $A_{\mu}(x) = A_{\mu}^{*}(x)$  is Lorentz invariant. Show that the same reality condition for a spinor field  $\psi(x)$  is not compatible with Lorentz invariance in a generic representation of  $\gamma$ -matrices.
- 2. Show that in the Dirac representation for  $\gamma$ -matrices the Majorana condition for a spinor  $\psi(x) = \psi^c(x)$  with  $\psi^c(x) = \gamma^2 \psi^*(x)$  is Lorentz invariant and that  $(\psi^c)^c = \psi$ .
- 3. Show that in the Majorana representation for  $\gamma$ -matrices the Majorana condition for a spinor  $\psi(x) = \psi^c(x)$  with  $\psi^c(x) = \psi^*(x)$  is Lorentz invariant.
- 4. Find a unitary transformation which changes an overall sign of the matrix  $\gamma^2$  only, keeping all remaining  $\gamma$ -matrices unchanged.

#### Problem 2 (10 points)

Suppose  $c_i$ , i=1,2 are two fermionic annihilation operators and  $c_i^{\dagger}$  the corresponding creation operators with the anti-commutation relations

$$\{c_i, c_j\} = \{c_i^{\dagger}, c_j^{\dagger}\} = 0, \quad \{c_i, c_j^{\dagger}\} = \delta_{ij}.$$

These operators act on a fermionic Fock space  $\mathcal{F}$  that is generated by the action of the creation operators from the vacuum  $|0\rangle$  with  $c_i|0\rangle = 0$ , i = 1, 2.

Questions:

1. Show that the Fock space has dimension dim  $\mathcal{F} = 4$ .

2. Define  $\gamma$ -operators via

$$\gamma^{0} = c_{1} + c_{1}^{\dagger} \qquad \gamma^{1} = i(c_{2} + c_{2}^{\dagger})$$

$$\gamma^{2} = c_{1} - c_{1}^{\dagger} \qquad \gamma^{3} = c_{2} - c_{2}^{\dagger}.$$

Using the anti-commutation relations between oscillators, show that these  $\gamma$ -operators satisfy the Dirac algebra

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}.$$

#### Problem 3 (30 points)

Two coupled harmonic oscillators are described by the hamiltonian

$$H = \frac{1}{2}(p_1^2 + \omega q_1^2) + \frac{1}{2}(p_2^2 + \omega q_2^2) + \lambda q_1 q_2,$$

where  $\lambda$  is a coupling constant. The vacuum-to-vacuum transition amplitude in the presence of sources is

$$Z[J_1, J_2] = N \int \mathcal{D}q_1 \mathcal{D}q_2 \exp\left(iS + i \int dt J_1(t)q_1(t) + i \int dt J_2(t)q_2(t)\right),$$

where S is the corresponding action and the normalization factor N is chosen such that Z[0,0]=1.

Evaluate the correlation function  $\langle q_1(t_1)q_2(t_2)\rangle$  at orders  $\lambda$  and  $\lambda^2$  in perturbation theory in terms of the corresponding Feynman propagator.

#### Problem 4 (20 points)

Consider the scalar  $\phi^3$  theory governed by the Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{g}{3!} \phi^3.$$

- 1. Formulate the Feynman rules for the theory (in the x-space).
- 2. Show, by power counting, that the theory is renormalizable in d=6 space-time dimensions.

Hint. Use superficial degree of divergence.

3. Write an expression for the one-loop self-energy  $\Sigma$  in d=6 in the momentum space (but do not evaluate it).

### Problem 5 (25 points)

The transition amplitude for the harmonic oscillator has the form

$$W(q_1, t_1; q_2, t_2) = \left(\frac{m\omega}{2\pi\hbar |\sin\omega(t_1 - t_2)|}\right)^{1/2} e^{\frac{im\omega}{2\hbar \sin\omega(t_1 - t_2)}} \left[ (q_1^2 + q_2^2)\cos\omega(t_1 - t_2) - 2q_1q_2 \right].$$

Let  $W_E$  is an euclidean version of W obtained by Wick's rotation  $t \to -i\tau$ . Questions:

1. Compute the "partition function"  $(\tau_1 > \tau_2)$ 

$$Z = \int \mathrm{d}q \, W_E(q, \tau_1, -q, \tau_2) \,,$$

where anti-periodic boundary condition for q(t), i.e.  $q_2(t_2) = -q_1(t_1)$ , were assumed.

2. Show that the inverse of this partition function coincides with the partition function for a  $fermionic\ barmonic\ oscillator$  with the Hamiltonian

$$H = \frac{\hbar\omega}{2} \Big( b^{\dagger}b - bb^{\dagger} \Big) \,,$$

where the operators b and  $b^{\dagger}$  obey the anti-commutation relations

$$\{b,b\} = 0$$
,  $\{b^{\dagger},b^{\dagger}\} = 0$ ,  $\{b,b^{\dagger}\} = 1$ .

Hint. Use the operator formalism to compute the partition function.

3. Show that the so-called Witten index W for the fermionic harmonic oscillator

$$W = \operatorname{tr}\left((-1)^{N_F} e^{-\beta H}\right),\,$$

where  $N_F$  is a fermionic number operator, coincides with the inverse of the actual partition function of the bosonic harmonic oscillator.

