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Midterm Quantum Field Theory 2022

Instructions:
e Write your name and student number on every sheet.
¢ Make sure your answers are understandable and readable.
e Please solve each problem on a different sheet.
Formularium and conventions:

o We use the Minkowski metric in four spacetime dimensions 7, = diag(—1, +1,+1, +1)

Klein-Gordon equation:

(82 + m?)g(z) = 0

Complex scalar field:
dlaye / di(a(B)e*e + bt (F)e~=)
ot (z) = f dk(at(F)e—*= 4 b))

where dk = —&E_ and w = V2 +me.

2uw(k)(2m)?

Non-vanishing, equal-time canonical commutation relations :
[#'(@, 1), 17, 1)) = [¢(,1), (7, 1)] = i6®)( — §)

la(k), o (K')] = [b(k), b} (k)] = (27)°2w6®(k — k')
where II = §y¢' and It = Gy¢.

The fourier decomposition of a function f(z) is defined as

oo 4 . )
f(z) = [ %f(k) gt

where f is the fourier transform of f.



Exercise 1: Short questions [20 pts + 2 bonus]
Answer the following questions, try to be as brief as possible.
(i) [4 pts] State Wick’s theorem for a free real scalar field.

(ii) [4 pts] When calculating correlators using the generating function expressed as a path
integral, why does one need to use the time-ordering operator?

(iii) [3 pts] What are the two types of transformations found in the proper orthochronous
part of the Lorentz group?

(iv) [4 pts] Write down the expression for a free real scalar field in terms of the creation and
annihilation operators.

(v) [5 pts + 2 bonus] Explain why it is necessary to introduce an e in the path integral,
by deforming the integration contour (or by adding it in the Lagrangian). Bonus: Give
a physical interpretation of this.

Exercise 2: Complex scalar field propagator [30 pts + 5 bonus]

The propagator of a free complex scalar field is obtained by the following time-ordered product
{0T¢(z)e' ()0) 1)

In this exercise we will derive a concrete expression for this time-ordered product.

(i) [6 pts] First show that we can write
(<3 +m?) (a(:c" _ y°)<0|¢(:c)¢f(y)|o>) =
-y (5(m° - y°)<0|¢(x)¢*(y)|o>) + 8(2° — )80 016(2)6! (1)10)

Hint: use that 9.8(z) = §(z).
(ii) [10 pts] Using this, check that (1) is the Green’s function of the Klein-Gordon operator.

(iii) {10 pts] Expressing the complex quantum fields ¢(z), ¢'(y) in terms of the annihilation
and creation operators a(k), a'(k), b(k) and b'(k), rewrite (1) as:

Az — y) = i0(z° — yo)‘/.dl-c e @ 4 4g(y° — 29) /dfe ¢~k (v} (2)
where dk = % and w = V k2 + m2.

(iv) [5 pts] Argue whether or not (2) is invariant under the orthochronous subgroup of Lorentz
transformations.



(v) [Bonus, 5 pts] Finally, verify that (1) corresponds to the Feynman propagator you
derived in class using path integral quantization, i.e. show that (2) can be rewritten as:

d4 k eikl(:n ¥

Alz—-y) = (2m)4 k2 + m? — de (3)

with € > 0 infinitesimal.

Exercise 3: Complex scalar field generating function [25 pts + 3 bonus]

Consider a theory with two free real scalar fields with equal mass
1 1 1 1
Ly = —50u0"01 — 5mPeL — S8,pa0pz — S5 @)

(i) [3 pts] This theory is equivalent to a complex scalar field theory, by defining a complex
scalar ¢ = 715(901 + ;). Write down the Lagrangian density for ¢.

(ii) [10 pts] Write down the path integral generating function Zo[J',J] for the complex
scalar Lagrangian density you get in (i}, with source terms J'¢ + ¢'J. Then use Fourier
transforms to express Zy|J', J] in momentum space.

(iii) {7 pts] Calculate the generating function Zy[J1, J] in momentum space via the Gaussian
integral. You do not have to determine the overall constant. Hint: Your result should
include the Feynman propagator with expression (3) (the ie term is not important here).

(iv) [5 pts] Calculate the 4-point function {0| T¢'(z;)d! (z2)d{z3)d(z4) |0).

(v) [Bonus, 3 pts] Now add an interaction term Liy = —% (¢r¢)2 to the Lagrangian density
of the complex scalar field. Express the new generating function Z[J1, J], which possesses
this interaction term, in terms of the functional derivatives of Zy[J1, J].

Exercise 4: Spontaneous Symmetry Breaking [25 pts]

Consider two interacting real scalar fields, ¢, ¢2, described by the Lagrangian density

1 1 1 1 A
L= —50,18" b1 — 5mid — 50,820 — smids — 7 (41 +63)°, (5)

where A > 0.
(i) [5 pts] Show that £ is invariant under the transformation
é1 ¢ cosf® —sinf\ (¢
(¢2) ~ RO) (¢2) ' (sinﬂ cosf / \¢n (6)

where 8 is a real parameter independent of spacetime. This invariance is called global
O(2) symmetry.



Now define the scalar potential,

) 1 1 A 2
Vig, ¢ = §m3¢? + 2m§¢§ 30 (62 + 43)", (7)
such that the Lagrangian density reads,
1 1
L= 2 107 ¢y - 28p¢23“¢2 — Ve, ¢2]- (8)

(ii) [6 pts] Assume mi > 0, sketch the potential V¢, ¢;], and show that it has a unique
minimum.

The minimum that you have found is the unique physical vacuum, which also satisfies {(¢;)
{¢n) = 0, i.e., vanishing vacuum expectation value (VEV).

For the remaining of this question, we assume A < 1 such that the perturbative approxi-
mation gives a good enough description of the theory. Within this approximation, the squared

mass is the eigenvalues of the matrix ag.- ;;j around the minimum, where %, j € {1,2}.

(iii) [4 pts] Compute the mass(es) of the fields that are given by the above explanation. Are
they finite or do they vanish?

(iv) [5 pts] Assume m2 < 0, and show that the minima of V[¢y, ¢, satisfies ¢ + @93 = v?
where v is a constant that you should determine.

Notice that the potential has a continuum of minima for this case. This means the system
has infinitely many candidates for the vacuum state. However, the system has to choose a
vacuum since it is a unique state. This choice leads to the concept of spontaneously broken
global symmetry.

Now, without loss of generality, choose the vacuum state to be at ¢1 = v, $2 = 0 and de-
fine the fields o(z) := ¢1(x) — v and =w(z) := ¢2(z). This gives you a new Lagrangian in terms
of o and 7. Note that the new Lagrangian does not have global O(2) symmetry anymore,
therefore making this an example of spontaneous symmetry breaking,.

(v) [6 pts] Write down the Lagrangian density in terms of o, m, A, v. Calculate the masses
of the fields o, .



