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1) Start every exercise on a separate sheet.

2) Write on each sheet: your name and initials. In addition, write on the first sheet:

your address, postal code and your field of study. Indicate whether you follow

the master’s programme in theoretical physics.

3) Write legibly and clear! If not, your work will not be graded.

4) The exam consists of three exercises.

1. Feynman diagrams and auxiliary fields

Consider a field theory in four space-time dimensions with two real fields, φ en A,

described by the Lagrangian

L = −1
2
(∂µφ)2 − 1

2
m2 φ2 − λφ4 − 1

2
A2 + A(µ2 + g φ2) .

i) Give the propagators and vertices. Determine the dimension of the fields and of

the coupling-constant and mass parameters λ, g, µ2 and m2.

ii) Calculate the self-energy diagrams in the tree approximation and give the masses

for the physical particles described in this approximation. Subsequently give

the full propagators in the tree approximation and use these in the next three

questions.

iii) Calculate the (three) self-energy diagrams for the field φ in the one-loop approx-

imation. Give the mass-shift of φ in that approximation. (Note: do not try to

evaluate the integrals.) For which value of g does the mass shift vanish?

iv) Calculate the mass shift for the field A in the one-loop approximation. What do

you conclude?

v) Solve the equations of motion for A en substitute the result into the Lagrangian,

which will then depend only on φ. Show that this corresponds to integrating out

the field A in the path integral.

vi) Evaluate now again the mass of the field φ in tree approximation and compare

the result with that of question ii) above.
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vii) Bonus question: Calculate again the self-energy diagrams in the one-loop ap-

proximation? Compare the result with that obtained in question iii).

2. The Witten index

Consider a quantum-mechanical model with a Hamiltonian that depends on a coor-

dinate operator q and a momentum operator p, satisfying the standard commutation

relation [q, p] = ih̄. The Hamiltonian takes the form of a two-by-two diagonal matrix,

whose matrix elements are denoted by H±(p, q).

i) The class of Hamiltonians that we consider is encoded in functions W (q), and we

have

H±(p, q) =
p2

2m
+ 1

2
mW 2(q)± 1

2
h̄W ′(q) , W ′ =

∂W

∂q
. (1)

Write down a function W (q) such that you obtain the Hamiltonian for the su-

persymmetric harmonic oscillator that was treated in class. Can you give the

eigenvalues of this Hamiltonian?

To appreciate why this class of Hamiltonians is special, consider the operators,

Q =
1√
2m

 0 mW (q) + ip

0 0

 , Q† =
1√
2m

 0 0

mW (q)− ip 0

 , (2)

Furthermore there is an operator F = diag(1,−1), which obviously commutes with the

Hamiltonian. This operator will be called fermion operator: states with eigenvalue +1

will be called bosonic and are described by H+; states with eigenvalue −1 will be called

fermionic and are described by H−. Of course, these names are a matter of convention

and can be interchanged.

ii) Show that the following operator relations hold,

{Q,Q†} = QQ† +Q†Q = H , Q2 = (Q†)2 = 0 . (3)

Prove from these relations that Q and Q† commute with the Hamiltonian. Hence

they define conserved charges. Furthermore, prove that F anticommutes with

the operators Q and Q†, so that these operators may be regarded as fermionic.

iii) Prove from the first (anticomutation) relation (3), that the Hamiltonian must

have non-negative expectation values for any state |ψ〉. Therefore we expect an

infinite number of postive-energy states and a finite number of zero-energy states.

Show that the latter must satisfy Q|ψ〉 = Q†|ψ〉 = 0.

In this problem we are interested in counting the number of zero-energy states. One

can show, using the above properties, that the positve-energy eigenstates appear always

in pairs consisting of a bosonic and a fermionic state. Therefore it is interesting to

consider the following traces over the full Hilbert space, Tr[e−βH ] and Tr[Fe−βH ]. The

first expression is the partition function, which is a very complicated function of β,
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depending on the function W (q). The second expression equals the difference of the

partition function for the bosonic states minus the partition function for the fermionic

states.

iv) Argue that Tr[Fe−βH ] receives contributions from only zero-energy states. There-

fore it must be independent of β and furthermore it must be equal to an integer.

What is the meaning of this integer? Expressions that always take integer values

are often called ‘index’ in the mathematical literature. The expression at hand

is known as the Witten index.

We now consider the field-theoretic representation of the above. The Hamiltonian

(1) corresponds to a Lagrangian with one bosonic and one fermionic coordinate. The

bosonic (Euclidean) action takes the form

Sbosonic =
∫ h̄β

0
dτ

[
1
2
m2q̇2 + 1

2
mW 2(q)

]
, (4)

where we suppressed a term of order h̄. The fermionic action reads,

Sfermionic = h̄
∫ h̄β

0
dτ [ᾱ(τ)α̇(τ)− ᾱ(τ)W ′(q(τ))α(τ)] , (5)

where we note the proportionality factor h̄. To evaluate the partition function one

evaluates the path-integral over periodic bosonic and anti-periodic fermionic paths.

(The standard fermionic boundary term in the fermionic action is required for deriving

this result, so that it was suppressed in (5).) To obtain the Witten index, one evaluates

the path integral but now with periodic boundary conditions for both bosonic and

fermionic fields.

Since we have established that the expression does not depend on β, we will evaluate

the path integral in the limit h̄β → 0. The paths can then be taken constant over the

(0, h̄β) interval. In class we have followed this approach for an particle moving in some

potential V (q), and we derived the following (bosonic) result,

Zβ ≈
√

m

2πh̄2β

∫ ∞

−∞
dq e−β V (q) . (6)

To include the fermions, we should simply include their contribution into the potential

V (q) and subsequently integrate over ᾱ and α (because the τ -dependence disappears

in the h̄β → 0 limit, there are only two fermionic variables left).

v) Show that the expression for the Witten index in the limit described above,

amounts to substituting V (q) = 1
2
mW 2(q) − h̄ᾱ αW ′(q)] in (6), subject to an

overall integral
∫

dᾱ dα. Perform the latter fermionic integrals and show that

the answer becomes independent of h̄, but not (yet) of β.

vi) By means of a variable change, prove that the resulting bosonic integral equals

−1. Bonus question: Scrutinize the variable substitution to argue that other

values remain possible.
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3. Kaluza-Klein compactification of Maxwell theory

Consider the action of Maxwell theory in five space-time dimensions,

S[AM ] = − 1

4 g2

∫
d5x FMN F

MN , (7)

where M,N = 0, 1, 2, 3, 4 and FMN = ∂MAN − ∂NAM . The action is invariant under

gauge transformations,

AM → AM + ∂MΛ(x) , (8)

where Λ is an arbitrary function of the coordinates xM .

We will be considering the situation where one of the coordinates, x4 ≡ y, is

compactified on a circle with radius R, so that xM = (xµ, y) with µ = 0, 1, 2, 3 and

0 ≤ y < 2πR. The (real) gauge field AM is decomposed accordingly,

AM = (Aµ, φ) , where φ ≡ A4 . (9)

Both fields, Aµ and φ, depend on both xµ and y. In view of the fact that y parametrizes

a circle, we assume the fields to be periodic in y. Therefore they can be written in terms

of a Fourier series, leading to an infinite number of four-dimensional fields, A(n)
µ (x) and

φ(n)(x), labeled by integer numbers n. In the following, x will always refer to the

four-dimensional coordinates.

i) Write down this Fourier series. Which of these four-dimensional fields are real

and which ones are complex. Assuming that there are complex fields, what is the

consequence of the reality condition on the original field AM?

ii) For the moment, assume that Λ(x, y) is also periodic in y, so that it can be

written as a similar Fourier sum, leading to infinitely many parameters Λ(n)(x),

characterized again by integers n. Write down the gauge transformations for Aµ

and φ. In the four-dimensional context we are thus confronted with an infinite

number of fields and gauge transformations. Prove that we can use the gauge

transformations associated with Λ(n)(x) to put the fields φ(n)(x) to zero, provided

that n 6= 0.

Henceforth we will thus suppress the fields φ(n)(x) with n 6= 0. Only the gauge trans-

formations associated with the function Λ(0)(x) remain.

iii) Substitute the Fourier series for Aµ and φ into the Lagrangian (7), which is then

expressed in terms of the fields A(n)
µ (x) and φ(0)(x). First use that,

Fµ4 = −F4µ = ∂µφ− ∂yAµ , Fµν = ∂µAν − ∂νAµ , (10)

which are to be decomposed in Fourier modes, subject to the gauge condition

discussed in ii). The result is an infinite sum of free-field Lagrangians in four

space-time dimensions. Consider the spectrum. Which four-dimensional fields

are massless and what is their spin? Which fields are massive, what is their spin

and what is their mass. Do all fields have different masses, or are there certain

mass degeneracies?
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iv) Let us now reconsider the gauge transformation parameter Λ(x, y) and try to

understand whether we can relax the periodicity condition. Clearly, the fields

have to remain periodic on the circle, and therefore the derivatives ∂µΛ and ∂yΛ

must be taken periodic in y. Consider a Fourier sum for these derivatives and

show that there is one particular set of functions for which Λ is not periodic,

although its derivatives are periodic. (Use that a function that is not periodic

over a certain interval, can always be written as a linear function plus a periodic

function).

v) Based on the previous question can you now indicate which symmetries are im-

plied by the higher-dimensional gauge transformations for the Lagrangian derived

in question iii)?

vi) Demonstrate that the Lagrangian obtained in iii) does indeed exhibit all these

symmetries.

vii) Bonus question: Assume that in five space-time dimensions there is also a

complex scalar field Φ with ‘charge’ q. Under the original gauge transformations,

this field thus transforms as

Φ(x, y) → eiqΛ(x,y) Φ(x, y) . (11)

Assume that Φ is periodic over the circle parametrized by y and derive the con-

sequences for Λ(x, y + 2πR) − Λ(x, y). Consider again a Fourier decomposition

for Λ(x, y) and compare the result with the results obtained in v). Show that the

results agree in the limit where R is shrunk to zero.
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