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1) Start every exercise on a separate sheet.

2) Write on each sheet: your name and initials. In addition, write on the first sheet:

your address, postal code and your field of study. Indicate whether you follow

the master’s programme in theoretical physics.

3) Please write legibly and clear.

4) The exam consists of three exercises.

1. Fermionic and bosonic harmonic oscillators

In the lectures we found the following discretized version of the fermionic path integral,

which we present here in the Euclidian setting,

W (τN , ᾱN ; τ0, α0) =
N−1∏
i=1

∫
dᾱi dαi

× exp

(
ᾱN αN −

N−1∑
i=0

[
ᾱi+1(αi+1 − αi) +

1

h̄
∆H(ᾱi+1, αi)

])
(1)

For the fermionic harmonic oscillator we choose H(ᾱi+1, αi) = h̄[ω ᾱi+1αi − ω0], where

ω0 represents a zero-point energy, to be discussed later. The continuum version of the

integral (1) reads (we take the limit ∆→ 0, keeping τN − τ0 = N∆ finite in the usual

fashion),

W =
∫
Dᾱ(τ)Dα(τ) exp

(
ᾱ(τ2)α(τ2)−

∫ τ2

τ1
dτ
[
ᾱα̇+ h̄−1H(ᾱ, α)

])
, (2)

whereH(ᾱ, α) = h̄[ω ᾱ(τ)α(τ)−ω0] and τ1 and τ2 correspond to τ0 and τN , respectively,

in the discretized expression (1). We are interested in evaluating the path integral by

using the semiclassical approximation, which is exact in this case.

i) Write down the field equations for α(τ) and ᾱ(τ) and evaluate their classical

solutions expressed in the proper boundary values at τ1 and τ2.

ii) Write down the integrand that appears in the path integral (2) for these classical

solutions.
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iii) As always the result of the semiclassical approximation is expressed in terms of

the integrand taken at the classical solution times a gaussian integral involving

the fluctuations around this solution. To determine the gaussian integral, return

to the discretized version of the path integral (1) and substitute the required

boundary values for the fields. Prove that this path integral is equal to 1.

iv) Combine the above results to write down the resulting expression for the path

integral W and show that it satisfies the product rule, thus confirming the

normalization derived in iii). Furthermore evaluate the trace and the super-

trace of W from the corresponding integrals over the fermionic variables, using

βh̄ = τ2 − τ1. These will yield the expression for the partition function Tr[e−βH ]

and for Tr[(−)F e−βH ], respectively. Here F is the fermion number operator,

which equals 0 for a bosonic and 1 for a fermionic state. Explain the result for

the partition function in terms of the ground state and the excited states of a

fermionic harmonic oscillator.

v) Let us now also introduce a bosonic harmonic oscillator into the path integral.

We know that the corresponding partition sum takes the form,

Zboson(β) =
e−βh̄ω/2

1− e−βh̄ω
. (3)

Combine this result with the expression for the supertrace of the fermionic har-

monic oscillator and fix the value for the zero-point energy ω0 such that the

supertrace becomes independent of β.

vi) Can you explain the β-independence of the supertrace? Assume that, for a similar

theory with a more general potential, the result for the supertrace would also be

β-independent. Can you deduce in that case why the supertrace should take an

integer value?

2. Renormalization of Yukawa couplings

Consider a field theory for a massive complex fermion field ψ(x) and a scalar field φ(x)

in d = 4 space-time dimensions. The free Lagrangian equals,

L0 = −ψ̄(/∂ +M)ψ − 1
2
(∂µφ)2 − 1

2
m2φ2 . (4)

We consider two types of interactions between these fields,

L1 = g1 ψ̄ψ φ , L2 = g2 ψ̄γ
µψ ∂µφ . (5)

i) Write down the Feynman rules for the two theories given by L0 +L1 and L0 +L2.

Explain what happens with the two Lagrangians when shifting the field φ with

a constant.

ii) Consider the one-loop diagrams contributing to the fermion self-energy and give

the explicit expressions for the two theories. Are the diagrams divergent and, if

so, indicate the counterterms that one needs to absorb all the divergencies.
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iii) What are the mass dimensions of the fields and the coupling constants in the two

theories? Are these theories renormalizable by power counting and why (not)?

iv) Which of these two theories are both renormalizable by power counting and

strictly renormalizable? Explain your answer.

v) Answer these last questions iii) and iv) again, but now for d = 2. Can you argue

that the theory based on L1 is in fact super-renormalizable? Hint: consider

carefully how possible counterterms can be absorbed into the parameters and

into the fields of the initial Lagrangian.

3. Unstable particle

Consider the action for two scalar fields, φ and σ, described by the Lagrangian,

L = −1
2
(∂µφ)2 − 1

2
m2φ2 − 1

2
(∂µσ)2 − 1

2
M2σ2 + g σ φ2 . (6)

i) Give the expressions for the propagators and vertices of this Lagrangian. Include

the iε-terms in the propagators.

ii) Compute the amplitude for two incoming and two outgoing φ-particles in tree

approximation, restricting the values of the momenta assigned to the external

lines by p2 = −m2. Assuming that the internal σ lines carry momenta q such

that q2 +M2 is large, one can safely drop the iε-terms in the propagators. Note,

however, that this will therefore depend on the values taken by the momenta of

the external lines.

iii) Assuming that M > 2m, the particle associated with σ is not stable and can

decay into two φ-particles. This should imply that its propagator ∆σ(q2) will no

longer exhibit a pole at some real value of q2. In lowest order this is not the case,

as there is a pole at q2 = −M2. Therefore it is relevant to see what happens

when including a one-loop self-energy diagram with two external σ-lines and

two internal φ-lines. The shift in the inverse propagator, according to Dyson’s

equation, takes the form q2 + M2 − [i(2π)4]−1Σσ(q2), where Σσ(q2) represents

the contribution of the σ-self-energy diagram. Prove that this diagram can be

written as,
1

i(2π)4
Σσ(q2) = 2ig2

∫
d4x ∆φ(x) ∆φ(x) e−iq·x . (7)

iv) To handle the iε-terms in ∆φ(x) we will not convert the expression (7) directly into

the momentum representation. Instead we first use an identity for the propagator

∆φ, which is a generalization of an identity that we have discussed in the lectures

for the harmonic oscillator,

∆φ(x) =
1

i(2π)4

∫
d4p

eip·x

p2 +m2 − iε

= θ(x0) ∆+(x) + θ(−x0) ∆−(x) . (8)
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Here ∆±(x) is defined by

∆+(x) = [∆−(x)]∗ = ∆−(−x) =
1

(2π)3

∫ d3p

2ω(p)
eip·x−iω(p) x0

, (9)

where ω(p) =
√

p2 +m2.

Using the relations between ∆+ and ∆− indicated in equation (9), prove that the

imaginary part of (7) can be written as

Im

[
1

i(2π)4
Σσ(q2)

]
= g2

∫
d4x

[
∆+(x) ∆+(x) + ∆−(x) ∆−(x)

]
e−iq·x . (10)

v) Write (10) in terms of momenta by substituting (9). Show that the result is

positive and will only differ from zero whenever q2 < −4m2. Hint: the latter is

conveniently verified in the Lorentz frame where q = 0.
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