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1) Start every exercise on a separate sheet.

2) Write on each sheet: your name and initials. In addition, write on the first sheet:

your address, postal code and your field of study. Indicate whether you follow

the master’s programme in theoretical physics.

3) Please write legibly and clearly.

4) The exam consists of three exercises.

1. Functions versus functionals

Consider a functional

F [f ] =
∫

dx f(x) . (1)

i) Interpret this expression by discretizing the continuous variable x into N inde-

pendent variables xi separated by an increment ∆. The continuum limit amounts

to shrinking ∆ → 0 keeping the range of integration N∆ fixed. Write down (1)

as a sum over the function values fi = f(xi).

ii) Define the functional derivative ∂F [f ]/∂f(x) of (1) by considering infinitesimal

changes of the function f(x). Rewrite this definition in the limiting procedure.

iii) In the discrete case one would expect that the functional derivative corresponds

to the partial derivative with respect to the variables fi. Can you verify whether

or not this is the case? If not, can you write down the correct expression for the

functional derivative in the dicretized case, such that you obtain the same answer

as for the functional derivative?

iv) Now consider some general functional F [f ] subject to the functional differential

equation,
∂F [f ]

∂f(x)
= λ(x) F [f ] . (2)

Derive the solution by first solving the discretized equation and subsequently

taking the continuum limit.

2. Tunneling for a particle on a circle

Consider a particle with mass m moving on a circle with radius R, described by an

angular variable 0 ≤ θ < 2π. The Euclidean Lagrangian is given by,

LE = 1
2
mR2 θ̇2 + V (θ) , (3)
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with potential V (θ) = g2 sin2(Nθ/2). This potential is non-negative and has N minima

at regular distances around the circle. Clearly there exists a (anti-)instanton solution

connecting two adjacent minima, which we denote by θ0(τ).

i) Prove that the potential has minima at θ = 2πn/N where 0 ≤ n < N − 1, and

that d2V/dθ2 equals 1
2
N2g2 at these minima. It is convenient to inroduce the

quantity ω = gN/
√

m R2. What is the meaning of ω? (g will be taken positive).

ii) Prove that the instanton solution satisfies the differential equation,

dθ(τ)

dτ
=

ω
√

2

N
sin(Nθ/2) . (4)

and that the corresponding action equals (N 6= 0),

S0 = SE[θ0] = g
√

2mR2

∫ 2π/N

0
dθ sin(Nθ/2) =

4
√

2 g2

ω
. (5)

iii) Let us now consider the Euclidean path integral in the semiclassical approxi-

mation in the limit that τ2 − τ1 = T → ∞ between two minima θ1 = 2πm/N

and θ2 = 2πn/N , where m, n are integers between 0 and N − 1. Discuss all the

classical paths that contribute to the functional integral in the infinite-T limit.

Note that there is an extra degeneracy as compared to the case of the periodic

potential, due to the fact that the particle moves on a circle so that the minima

of the potential are identified modulo N .

iv) In the lectures we derived the expression for the Euclidean path integral between

two minima at ma and na in a periodic potential on an infinite line, where a

is the periodicity interval (which we identify with a = 2π/N) and m and n are

integers,

WE(ma,∞ ; na,−∞) =

lim
T→∞

√
mR2ω

πh̄
e−ωT/2

∫ π

−π

dθ

2π
ei(n−m)θ exp

2 cos θ

√
S0

2πh̄
K ′ T e−S0/h̄

 , (6)

Argue that the corresponding expression on the circle takes the form

WE(2πn/N,∞ ; 2πm/N,−∞) =
∞∑

k=−∞
WE(2πn/N + 2πk,∞ ; 2πm/N,−∞) , (7)

where 0 ≤ m, n < N − 1.

v) Using the Poisson resummation formula

∞∑
k=−∞

e2πikx =
∞∑

l=−∞
δ(x− l) , (8)
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combine (6) and (7) to derive the following result,

WE(2πn/N,∞ ; 2πm/N,−∞) =

lim
T→∞

1

N

√
mR2ω

πh̄

[N/2]∑
l=−[N/2]

e2πil(n−m)/N e−El T/h̄ , (9)

where [N/2] is the integer part of N/2 (i.e. [N/2] equals N/2 for even N and

(N − 1)/2 for odd N), and

El = 1
2
h̄ω − 2h̄ cos

2πl

N

√
S0

2πh̄
K ′ e−S0/h̄ . (10)

vi) Bonus question Argue that the above result comprises the contributions of an

odd number of states. One is the ground state, which is non-degenerate. The

excited energy levels are all degenerate. Can you explain the presence of the

factor exp[2πil(n−m)/N ]?

3. An effective action

We consider two scalar fields φ(x) and η(x) defined in a (3 + 1)-dimensional spacetime

and the following two Lagrangians,

LA = −1
2
(∂µφ(x))2 − 1

2
m2φ2(x)− λ φ4(x) ,

LB = −1
2
(∂µφ(x))2 − 1

2
m2φ2(x)− g η(x) φ2(x)− 1

2
µ2η2(x) . (11)

These Lagrangians specify quantum field theories that we will call theory A and theory

B, respectively.
i) Determine the Feynman rules for both theories.

ii) Draw, in both theories, the tree diagrams with four external φ-lines and derive a

relationship between the coupling constant λ from theory A and and the coupling

constants g and µ from theory B such that they produce identical results.

iii) Give arguments based on the field equations that the two Lagrangians (11) de-

scribe the same quantum field theory.

iv) Give arguments based on the path integral that support your conclusion regarding

the previous question.

v) Give the physical masses associated with the fields φ and η in tree approximation.

vi) Consider the path integral for theory B and perform the (Gaussian) integration

over φ(x) so that we are left with a result of the form∫
Dη exp

(
− i

h̄
Seff [η(x)]

)
. (12)

Give a formal expression for Seff [η(x)]. Hint: use that Det(A) = exp (Tr[log (A)]).

Drop the contributions of zeroth order in g and write the propagator as a bilocal

quantity ∆(x, y).

vii) Give the order g and g2 terms in the expansion of Seff [η(x)]. Identify the corre-

sponding Feynman diagrams from which these terms originate.
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do not consider this This is one option:

1. Consider a theory of two real scalars φ, A in four dimensions interacting with a

three vertex, given by the Lagrangian:

L = 1
2
(∂µφ)2 − 1

2
(∂µA)2 − 1

2
m2A2 + gAφ2 (13)

Give the propagators and vertices for this theory, including the −iε in the expression

of the propagators. The reason will be seen later.

2. Compute the amplitude for the three diagrams with four external φ particles at

tree level. From now on we will concentrate on the diagram in which the two incoming

φ’s are annihilated into an A.

3. Give the rough behaviour of this diagram as a function of the total incoming

momentum ptot when the limit ε → 0 is taken. Here you may go to the center of mass

frame in which the sum of the incoming spatial momenta is zero, so that the amplitude

only depends on the total incoming energy Etot.

Can the result be physically acceptable for energies near the mass of the A particle,

given that the probability for any process to happen is proportional to the absolute

square of the amplitude?

4. In order to clarify this, we consider the one loop correction to the propagator

of A. Give the expression corresponding to the selfenergy of A to that order. Do not

compute the integral and denote this expression as Σ(p). Note that Σ(p) is in general

a complex function of p.

5. Including this correction to the propagator means that the selfenergy diagram

must be added to the expression for the propagator. Argue that the new propagator

is (add figure??):

∆D =
1

(2π)4i

1

p2 + m2 − iε
+

1

(2π)4i

1

p2 + m2 − iε
Σ(p)

1

(2π)4i

1

p2 + m2 − iε
. (14)

To first order in the interaction, this is

∆D =
1

i(2π)4

1

p2 + m2 − iε− 1
i(2π)4

Σ(p)
. (15)

Use this ’dressed’ propagator in the diagram considered in point 1. Take the absolute

square of the amplitude to show that there is now no real value of the incoming mo-

menta for which the probability of this process diverges. For this, note that the real

part of Σ(E) adds to ε, shifting the propagator pole away from m2 even when the limit

ε → 0 is taken.
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Bonus Question Can you say something about how the propagator would look

like if not one, but an infinite number of such selfenergy loops were taken into account

(add figure??)?

6. The general form of the amplitude squared now resembles a Gaussian. This is

called a resonance in the particle physics literature. Can you think of a way to discover

new particles with a very large mass experimentally using the above considerations?

not to be included:

There will be an extra sum over the number of times the instantons go around the

circle, so we get:

WC(
2πm

N
,∞ ;

2πn

N
,−∞) =

∞∑
k=−∞

W (
2πm

N
+ 2πk,∞ ;

2πn

N
,−∞)

= lim
T→∞

gN√
2πh̄

e−g2N2T/4
∞∑

k=−∞

∫ dθ

2π
eiθ(m−n+kN) exp[2 cos θ

√
S0

2πh̄
KTe−S0/h̄]

= lim
T→∞

gN√
2πh̄

e−g2N2T/4
∞∑

l=−∞

∫ dθ

2π
eiθ(m−n)δ(

θN

2π
− l) exp[2 cos θ

√
S0

2πh̄
KTe−S0/h̄]

= lim
T→∞

g√
2πh̄

e−g2N2T/4
∞∑

l=−∞
e

2πil
N

(m−n) exp[2 cos
2πl

N

√
S0

2πh̄
KTe−S0/h̄] (16)

5. Compare your answer with the one for the infinite line case with a periodic

potential. Can you explain the observed difference based on your knowledge of the

cases of a free particle on a line and on a circle?

6. Recalling that the above amplitude is in fact the inner product < 2πm
N
|e−HT/h̄|2πn

N
>,

insert in this matrix element a set of eigenstates | k >, labelled by k = 0, . . . , N − 1.

This is not a complete set, but it is sufficient in this approximation. Using the above

result, show that these states must satisfy:

<m|k><k|n>=
g√
2πh̄

e
2πik

N
(m−n), H| k>=

 h̄g2N2

4
− 2h̄ cos

2πk

N

√
S0

2πh̄
Ke−S0/h̄

 | k>

(17)

Argue that the first of these equations implies that the wavefunctions have the

symmetry:

<n + p|k>= e
2πik

N
p <n|k> (18)
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