INSTITUTE FOR THEORETICAL PHYSICS
UTRECHT UNIVERSITY

Final Exam Statistical Field Theory (NS-TP402M)

Tuesday, 2 February, 2010, 14:00-17:00

1. Use a seperate sheet for every exrcercise.
2. Write your name and inihuals on ol sheets, on the first sheet also your address and your student [D number.
3. Write clearly, unreadable work cannot be corrected.

4. You may use your notes and the book by Stoof et al.

Pseudospin ferromagnetism (70 points)

In this exercise, we consider a double-layer systemn of two two-dimensional homogeneous electron gases with equal
density n of electrons that are parallel to each other and only interact via interlayer Coulomb interactions. There is no
tunneling of electrons between the layers. We neglect the intralayer interactions, i.e., the electron-electron interactions
within the layers. Furthermore, we ignore the spin of the electrons. This system is often modeled as a pseudospin
system, meaning that we assign a spin one-half quantum number to the “which layer” degree of freedom: spin “up” (1)
means that an electron is in the top layer, spin “down” (|} means bottom layer. We model the interlayer interaction
by a contact interaction V{x - x') = Vod(x — x’) with V, > 0.

The starting point is the grand-canonical partition function given hy
Z= [ d[¢i]dlp]d [o7] dlo,]exp {-5[e7, 61, o1, @] /h} (1)

where the action is given by
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Upon lowering temperature, this system can undergo a phase transition corresponding to pseudo-spin ferromag-
netisn, in which, at zero temperature and for sufficiently strong interactions, all clectrons have the pseudospin state
[i Iy +et? 1/11 /V2, with e an arbitrary phase factor. Note that this corresponds to a pseudospin pointing in the
I -y plane {(where | 1} aud | |} refer to the z-axis). Also note that this pseudospin state physically meaus that the

electron is in a superposition of being in the top and being in the bottom layer.

a} (5 pownts) Argue, without calculations, why this system undergoes this phase transition. Why does the pseu-
dospin ferromagnet never point in the = direction?

\

b} (5 pownts) Argue that a suitable order parameter for this phase transition is (P{x, 7)) = Volat(x, 7)) (x, 7))

(The factor Vy is convention.)
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¢} (5 pownts) Perform a Hubbard-Stratonovich transformation to the complex bosonic feld ®{x, 7} that has
the property that (B(x, 7)) = Vo(#7(x, 70 (x, 7)), and show that the expression for Z after the Hubbard-

Stratonovich transformation is written as
Z :/d[fb']d[tb}d {cp;}d[qﬁ;]d{@;}d{cbl]exp{~5{(D?,(})T,,éz,(pi,@‘,@j /R,
with the action
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d} (10 points) Perform the functional integration over the electron fields B7. P1.#}. ¢y, so that the expression for

Z is written as

7 = d{d.-‘}d[(b}exp{«Spﬁ{q"vq’}/h} ;

and give the exact but formal expression for the effective action Seit[@*, 8],

€) (10 points) Calculate the effective action up to second order in the fields ®*(x,7) and ®(x,7) and show that

{up to irrelevant constants)

hg ha 1
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+%G0(x =X~ YGy(x X - T)J e(x'\ 7Y+ O (Joft) . (4)

NB: You do not have to show that the terms beyond second order start at order |¢[?,

£) (10 points) To describe the phase transition we consider feld configurations ¢, independent of position and
imaginary time ®(x, 7) = ®,. The effective action is then up to second order given by S [®F, 0] = RBAfL(1®g))
with fy (|®g]) = a(T)dg)?, with fr(l®o]) the Landau free energy density that describes the phase transition.
Show that o(T) is given by

- 1 1
a(T) = vt Z%:N/F(fk -1,
where 4 is the area of the two-dimension electron gases, ¢y = A’k?/(2m), and Nrp(z) = [e9% 4+ 17! is the
Fermi-Dirac distribution function, with Nj(r) = dNp(x)/de its derivative.

g) {5 pownts) Assume that the phase transition is continuous, Explain the criterion for the critical temperature and

give the equation that determines the critical temperature 7., without solving it.

h) (10 pownts) Caleulate the zero-temperature limit of ~(T), and show from this that the interaction strength
Vo needs to he larger than a (ritical interaction strength Voo moorder for the systetn to become pseudospin

polarized. Clive this eritical interaction strength.
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It turns out that the above system cau be mapped to a different system, where the pscudospin ferromagnetic phase
transition becomes a BCS transition. In order to see this, we perform a so-called particle-hole transformation on the
bottom layer, that is, we make a variahle substitution in the path integral to new fields Q;Ié)l The substitution is
agz(x,'r) = ¢;(x,7), and (51 (x.7) = @7(x,7}. The new fields are also fermionic (Grassmann) fields and the measure
of the path integral is invariant, Note that in the operator language the creation operator corresponding to the feld

#"(x, 1) destroys an electron, and therefore creates, by definition, a hole.

i) (5 points) Show that the action after this transformation becomes
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0
We see that this action is identical to the action for spin one-half fermions that attract each other and we therefore
expect a BCS transition, Le., a Bose-Einstein condensation of fermionic pairs. The only difference with the BCS

transition discussed in the course is that the spin down fermion has a dispersion relation # — €k, whereas the spin up

fermion has the dispersion relation ¢, — 7

J) (5 points) Given this observation, generalize Eq.(12.20) from the book to this case, and show that you obtain

from this the same equation for T, as in part h}.

Linear-response theory and Bose-Einstein condensation (30 points)
Consider a Landay free energy density for a phase transition characterized by an order parameter that is a cotnplex
number, denoted by ¢q. Assume that there are sources j and 4", for example external fields, that couple to the order

parameter, so that the total Landau free energy becomes
— 2 /60 i4 o * .
fulleol) = a(T)|eo)? + —2~l¢>05 = 17%0 = Py,

where £y > 0 and o(T) = (T~ T.) changes sign at a critical temperature T, (NB: oy > 0). We define the response

function I according to
(@0) =11},
for j — 0 and 7 > T,
a) (5 points) Show that IT 1/a(T). so that the phase transition is signaled by a diverging response function I1.

For the remainder of this exercise we consider a homogeneous system of interacting spinless bosons. The action
deseribing the system is § = Sp + Sine, with

c¥%) 3 thQ
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40
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Furthermore, we couple the system to complex-valued sources I"(x,7),1{x,7). This coupling is described by the

action

Sources of this kind can be implemented experimentally, for example in photo-emission spectroscopy.

Next. we define the following averages
(o = 5 [diglale]. oo sim
() = ,Zlv_/(i{é-]d{¢j._.fg~(sol¢' ol+Simfe” ol}/a ,
{3 = Z’%/d[(p‘}d[(pj.v,e“(50[¢',of'rS;m[aﬁ'.‘ﬁI-#Sdé'rwl),x/h‘

where Zy, Z, Z; are the partition function of the non-interacting and interacting systems, and the system coupled to

sources, respectively.

b) (10 points) Show that, to first order in I*(x, 7} and I({x, 7),
1 [ 3¢] 1 n3
(d{x,m)); = —5/ dr’/dx’(dv(x,r)qb'(x’:T’))I(x’,r') = ;z_/ dr//afx/G('x,T;x',T’)[(x’(,T/) ,
0 0

with G{x, 7;x’,7') the Green’s function of the interacting system.

¢} (5 points) Show that part a) and b) imply that a criterion for Bose-Einstein condensation is 1/G(0,0) = 0,

where G(k, wy,) is the Fourier transform of the Green’s function in the normal state.

d} (5 points) Show that for the non-interacting case this reduces to the well-known criterion for Bose-Einstein

condensation.

e) (§ points) Show that for an interacting system the eriterion for Bose-Einstein becomes u o= hE(0,0), where

RE(k,iwn) is the Fourier transform of the self-energy. Consider contact interactions Vix ~x') = Vad(x — x')

and give the condition for Bose-Einstein condensation within the Hartree-Fock approximation.
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where we substituted the Fourier expansion for the homogeneous noninteracting
Green’s functions, as discussed in Example 7.3, after which the integrals over po-
sition and imaginary time give rise to the Kronecker deltas & _ and §, . Next,
we split the fraction and perform the sum over Matsubara frequencies, giving

|
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where we used (7.31) and the result from Exercise 7.2. As explained in Sect. 10.4,
the interaction parameter Vp is related to the experimentally known s-wave scattering
length a. Using (10.54), we finally arrive at [81]
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It

12.5 Critical Temperature

As explained in Chap. 9, the second-order coetficient a(T) of the Landau free en-
ergy fi(|A]) determines the critical temperature for a second-order phase transition.
It is this term that changes sign at the critical temperature, such that the minimum of
the Landau free energy shifts away from zero, yielding a nonzero order parameter
(A). As a result, the critical temperature kgTe = 1/ B. is determined by the condi-
tion at(kpT.) = 0. As we now show, in the weakly-interacting limit when the critical
temperature is low, we can obtain an analytic expression for the critical temperature
from BCS theory. We start with converting the sum on the right-hand side of (12.22)
into an integral such that it becomes
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