GENERAL RELATIVITY FINAL
03.02.2017. Ruppert Blanw, 13:30-16:30

Please write your solutions to each of the five problems on a separare sheet of paper and write vour
name and student muonber on each sheet! You have 3 hours. Good hiek!

A formula: T, = %y“"'(c'),_._rj e+ Dty — t'),;,f],..,)

¢ [n this exam we work in units in which ¢ = 1. The exam counts as 45% of the grade and
contains in rotal 43 points. In this exam. G denotes Newton's constant.

X' B PROBLEM 1 Theoretical questions. (8 pts.)
Answer the following briefly (one or two sentences):
(a) (2 pts.) Define event horizon.
(b) (2 pts.) Define trapped surface.
(c) (2 pts.) What is the crgoregion (in the book it is called ergosphiere) of a rotating black hole?

(d) (2 pts.) Gravitational waves carry energy. State one observation based on which one can
conclude that.

X B PROBLEM 2 Birkhoff-Jebsen theorem. (15 points)

By performing suitable coordinate transformations on a general metric and by making use of the
splierical synmunetry one can show that the general metric tensor corresponding to a spherically
symmetric geometry (induced by a spherically svinmetric mass distribution) can be written as rhe
line elemnent.
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where v and g are some functions of t and r, = € [0,27) and J € [0, 7] are spherical angles and
and ¢ are the radial and time coordinares. respectively. Assume that vou know the non-vanishing
componeuts of the Riemann tensor for the metric (2.1). They are.
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(a) (4 points) By making nse of (2.2) caleulare the non-vanishing components of the Ricel tensor.
Show that these are, Ry, Ry, o2, Ryg. and Ry = Ry, When solving the Einstein vacuun
eqnation you do not need to calenlare the Ricei sealar. Why?

() (2 poinis) Show that the tr component of the Einstein vacuum equation implies that g is
independent of time, p(f.r) = p(r).

(c) (2 points) Use (a linear combination of) the remaining components of the Einstein vacuum
equiation to show that

vit,ry = —p(r)y+ f(1) . (2.3)

(d) (2 points) Use these results to conclude that the most general spherically symetrie solution
to the Einstein equation in the vacun (after a suitable redefinition of the time coordinate)
can be written as
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(e) (2 poinis) Show that the other components of the Einstein vacunm equation inply,
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where Rs is a real constant, so that we obtain the Sehwarzschild solution.

(€) (3 points) Make use of the Komar integral for the metric (2.4-2.5) to determine the physical
meaning of Rg. Can Ry be negative? If yes, explain why yes; if not, explain why not.

Hint: Recall that the Komar integral reads,

1 . . ,
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B PROBLEM 3 Schwarzschild-de Sitter metric (12 points)

In this problemn we shall consider the Schwarzschild-de Sitter space-time, whose metric (in static
coordinates) is given by,
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where A is the mass of a body, A is the cosmological constant, dQ? = dif*+sin*(d)dy® and ¢ € [0, 27)
and v € [0, 7] are spherical angles.

(a) (1 point) Name the Killing vectors of the merric (3.1).

(b) (2 points) Consider a test particle in equatorial plane and show that the equation of motion
can be written as,
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Here A is an affine parameter. € = 1 for wmassive particles and ¢ = 0 for light and massless
patticles. L = Ryde’ /d) is the angular momentim per unit wass, £ = =K ,dr? [dX is the
energy of the test particle per its unit mass and 2, and A, arve the Killing vectors for rotations
in the equatorial plane and for time translations, respectively.

) (2 points) Sketeh V(r) defined in Eq. (3.3) for ¢ = 1 for the relevaut qualitativels ditferent
! [ ) | A
cases (there are 3 distiner cases) {assume L > 0}, Based ou your drawings, what do vow think,
is there alwayvs a stable eircular orbit in this metric?

() (2 points) Consider radial motion (L = 0) and show thar there is a point in which. if the test
particle is at rest, it can stay there forever. Caleuate the radins of that point. Is that point
stable under small perturbations, e, if radius inereases (deercases) by a small amount. what
will happen ro the particle?

(¢) (4 points) Show that the evenr horizons are determined by the equation.

2N A,
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This equation has two real positive solutions. One represemts thie black hole event horizon ryy
awd the other the cosmological evenr horizon r.. The metric makes sense only if 1y < ro
and only in the region where rgy < r < r.. Assume for simplicity that the Hubble radius

ran = V3/A = rg = 2G A and show that the approximate radii of the two event horizons
are,
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Hint: To tind (3.5) expand around r = ry for the first solution and around r = rg for the
second solution.

(f} (2 points) Consider a test particle whose energy E = 1 and show that its coordinate velociry,
defined by dr/dt (t = +") at the black hole event horizon vanishes. Can vou interpret that
result?

B PROBLEM 4 Energy in Schwarzschild-de Sitter spacetime (10 points)

We have seen two possible definirions of the toral energy for spacetimmes that admit a timelike Killing
Veotor.

Er= /;d".rﬁn“.];i. Ep = -lﬁi]'.v /;d“.r\/"_,rn,_..];{.. (4.1)

where v; is the induced metric on a spacelike hypersurface & and ny, is the unit normal vector
associated with £ (when ¥ is spacelike. then n,, is timelike). Here the conserved currents are defined
as -

Jf =R, J4=K,R", (4.2)

for Killing vector A associated with time translations. In this problem vow should interpret the
cosmological constant A as the vacuum energy contribution to the energy-momentum tensor T,
i.e. A contributes as. T#* o Ag,,.. In this problem vou can use results from problemn 3.
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(b)

()

(d)

(! point) In de Sitter-Schwarzschild in the given coordinates, what are the meaningful spacelike
(spherical) hvpersurfaces to consider?

(2 points) Use the Killing vector identity, V,V, K7 = I, * (von do not need to prove this

ﬂ'ﬂl"
identity) and Srokes’ theorem to express Ep as a t\\'()-(lllll(‘llhl()lldl integral.

(2 points) A priori, it is not clear that a similar trick can be used for Er. However. using for
instance the definition of the Einstein-Hilbert action ineluding a cosmological constant,
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one can find a relation between J£ and Jf,. Derive this relation.

Hint: That relation can be obtained by deriving a relation begween T, and 17,

(3 points) Compute Fr and Eg as a function of the radius » of 98, Are Ep awd Ey equal?
For simplicity, for X choose a sphere of constant radins.

(2 points) The energy-momentiun tensor of the 'vacuum energy” A is of the perfect flnid form,
T = (p + p)UU, + poja., for timelike four-velocity U = (U%,0,0,0). What are p and p in
terms of A? Express the A-dependent contribution to Er and Eg in terms of p and p. Can
vou interpret them physically?



