GENERAL RELATIVITY MIDTERM EXAM
10 Nov 2017, 13:30 in Ruppert Blauw

Please write your solutions to each of the four problems on a separate sheet of paper! This is a
closed book exam. You have 3 hours. In total 35 points=35% of total grade. Good luck!

Some useful formulas:
e Killing vector identities: V,,V, K? = R”wa[\‘“, KoV, R=0.

e Riemann tensor: RPg, = 8,07, + 5,0, — (1 < v).

@ PROBLEM 1 Theoretical questions (& points)
Answer the following briefly (one or two sentences).

(a) (2 points) Define a local inertical frame (LIF).

(b) (2 points) When is the Cauchy surface in general relativity defined and what does that imply
for the initial value problem?

(c) (2 points) Imagine that you are an accelerated observed and that you measure redshifted light
from an observer at rest. How would you use this fact to argue that gravitational redshift must
exist?

(d) (2 points) List all the independent symmetries of the Riemann tensor.

B8 PROBLEM 2 Light Cones {5 points)
Consider a 1+1 dimensional space-time, whose metric (0, 2)—tensor is given by,
ds* = —dt ® dt + a(t)*dz ® dx . {(2.1)

where a(t) is a scale factor {a(t)dz is a 1-form field that can be used to measure physical distances
and dt is the 1-form field that can be used to measure time lapses). Assume that

a(t) = tY¢ (t>0). (2.2)

The constant e is defined as the rate of change of the inverse expansion rate: e = (d/dt)[1/H{t)],
where H(t) = (d/dt) In[a(t)]. Consider a vector field, V = d/dX (V# = dz*/dX in some coordinate
system z*). The light cones are then defined as

ds*(V, V) = 0. (2.3)
(a) (1 point) Show that (2.3) implies the following differential equations for the light-cones,

dt dr
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(b) (4 points) Solve this equation for expanding space-times (whose scale factor is given by Eq. (2.2))
for € # 1 and € # 0. Show that the solution can be written as

tl—l/e

1-1/e
Sketcl how the light cones for some point co > ¢ > 0 look like for ¢ > 1 (decelerating expansion,
d®a/dt? < 0). In general relativity it may happen that light cones cannot intersect (in the past

or in the future) or geodesics can stop. If you find any of these to be realized in this problem,
note that and provide a physical explanation for what it means.

z(t) =+

+ Iy . (25)

B PROBLEM 3 An embedded surface {12 points)

In this problem, consider a two-dimensional surface S € £ embedded in Euclidean three-space ¥
parameterized by cylindrical coordinates (r,6, z). The embedding is defined by 8 — @, r — +, and
2+ z(r), where the function z(r) is arbitrary for now.

(a) (I point) Starting from the line element in cylindrical coordinates, show that the induced metric
on the embedded surface is given by

N2
ds® = [1 - ((::) ] dr? + r? d6°.
dr

(b) (2 points) Show that the nonvanishing Christoffel symbols are given by

1 2’2" -7
| SN T roo_
]'-‘To o 1,'-' Frr - 1 + 2;27 P99 - 1+ 2;21

where primes denote derivatives with respect to r.

(¢} (2 points) Write down all components of the Killing equation, and verify that the vector K =
is a Killing vector. What symmetry does this Killing vector correspond to?

(d) (3 points) Show that the Ricei scalar is equal to,
222"
R=————=.
r(l 4 z72)?
We now impose that we want the Ricci scalar to be constant and nonnegative, R = Ry. You
may use this in the remainder of the exercise.

(e) (2 points) The Ricei scalar being constant requires z to satisfy a differential equation. Show
that this equation can be integrated once to yield
-1 Ryr?
=2 A4
14 22 2
Derive a condition for the integration constant A from the requirement that the embedding
should be smooth for all r < 1/2/Ry, and show that

2 =4 f—Rorz
\ 2—R0T2.

(f) (1 point) Integrate the last equation to yield z(r). Sketch the shapes of the embecded surfaces
in the cases Ry > 0 and Ry = 0.

(g) (I point) In two dimensions, does the requirement that the Ricci scalar be constant com-
pletely specify the geometry locally (in some small neighborhood), or is additional information
required?
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Figure 1: Here you see the congruence of geodesics ®(s, 7) on M. The bold line is $(0,7) = v(7).
The other lines are ®$(sg, 7), so they are also geodesic segments. You see the direction of T'(s, 7) =

0:®(s,7) and S(s,7) = OsP(s, 7). The variation field is J(r) = S(0, 7).



B PROBLEM 4 Jacobi fields (10 points)

In this exercise we will study congruences of geodesics in a manifold M. Let v: [r,71] = M be a

segment of a specific geodesic. We define a congruence of geodesics by a function ® : (—¢,€)x [, 7] =

M, such that ®#(0,7) = v*(7) and every curve ¥(sy, 7) is a segment of a geodesic, see figure 1.
The vector field J#(7) = 3;P#(s, 7)|s=0 is the variation field of .

(a) (3 points) Show that for a vector field V#

(b)

(c)
(d)

SV (TPV,V¥) = TPV, (S*V V) = RY |, S TPV°, (4.1)

where T#(s, 1) = 8,9"(s, 7) and S¥(s,7) = 9,P#(s, 7).
Hint: Recall the identity, [V, V, |V¥ = RF \ V7.

(3 points} By making use of Eq. (4.1), show that J* satisfies the following equation
PPV VadA = R* A5 (4.2)

This equation is called the Jacobi equation. Solutions of E¢. (4.2) are called Jacobi fields. It
can be shown that if J*(7) is a Jacobi field, there exists a congruence of geodesics ¥ with J#
as variation field.

{2 points) Show that ¥ and 7% are Jacobi fields.

(2 points) Show that, when the manifold M has a Killing vector A'*, this Killing vector field
restricted to «y is a Jacobi field.



