GENERAL RELATIVITY MIDTERM EXAM
11 Nov 2022, 13:30 - 16:30, KBG Cosmos, Pangea, Atlas & BBG - 0.05 (extra time).

Please write your solutions to each of the four problems on a separate sheet of paper! This is a
closed book exam. You have 3 hours. In total 35 points (+3 bonus pts) = 35% of the total grade.
Please write each question on a separate sheet of paper and sign each sheet! Good luck!

¢ Riemann tensor: Rf,,, = d,I'0, + FﬁAF,’)a — (e v).

B PROBLEM 1 Theoretical questions (& points + I bonus point)

Answer the following concisely.
(a) (2 points) Define a Killing vector field on an n-dimensional manifold M.
(b) (2 points) Give a definition of a local inertial frame (LIF).

(¢) (2 points) Define the future domain of dependence D¥(S) of a closed achronal set S C M,
which is subset of a manifold M.

(d) (2 points + 1 bonus point) Think of the coffee in a coffee cup as a closed, compact smooth
manifold (even though coffee consists of molecules, assume that these can be smoothed out).
Prove that after stirring the coffee, there is a point (a molecule) that has not moved by the
stirring.

Hint: Use Hadamard-Brouwer’s fixed point theorem [1910, 1911], which states that for any
continuous map ¢ that maps a three-ball B3 to itself, there exists a point x5 € B? that is a
fixed point of the map, i.e. ¢(zp) = zo.

NB: The Brouwer’s generalization uses a compact convex set in n € Ny dimensions rather than
B3, but for this question the Hadamard’s version suffices.

B PROBLEM 2 Relativistic particle in an electromagnetic field. (4 points)

The action of a charged particle in the presence of an electromagnetic field is given by

b . )
S = —'mczjn dr + E/‘A#(m ydz#, (2.1)

where dr = /—n,, dz#dz¥ [c is the proper time, m denotes particle’s mass and e is the electric charge
of the particle that dictates its interaction strength with the vector potential A*.
[t can be shown that the equations of motion of the particle, written in covariant form, are

dp* e
£ _ = pw .
dr  mec Pus (2.2)

where F,, = 29|, A, is the electromagnetic covariant field strength.

(a) (2 points) Recalling that the components of the electric field E* and those of the magnetic field
B are related to the components of the field strength as E* = F% FY = 5 B* gshow that the
covariant equations of motion (2.2) splits in components as

d = dg = U =
&('ymcz):eE-ﬁ, d—f=e(E+§ xB) : (2.3)

Explain the physical significance of the right hand sides of both equations.
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Consider a particle that is subjected only to a constant magnetic field, that we assume to be
oriented in the z-direction, namely B = By3, with 8,By = 0. One can show that, in the laboratory
frame, the particle describes a heliz, with its coordinates (z(t), y(t), z(t)) evolving in time according
to the following equations

z(t) = %2 sin(2) — 2 cos(Qt) + 1o, (2.4)
y(t) = 22 sin(Qt) 4+ 252 cos() + w0, (2.5)
z(t) = v ot + 20, (2.6)

where v, = (0}, v,0 = v,(0) and v, = v,(0) are initial velocities, 2o = 2(0) and xq, yo are related
to the initial position of the particle. Moreover, ? = w/v, w = eBy/(mce), with By = ||By|| is the
Larmor frequency, also known as cyclotron frequency. We can thus define a laboratory period Ty, that
is related to the period T}, measured in the frame of the particle as

27 27

Ty a Ty with T, = -

(b) (2 points) Use these results to explain the twin paradox.

(2.7)

B PROBLEM 3 Differential geometry on the two-sphere (7 points)

In this problem we will show two foundational results in differential geometry applied to the unit
two-sphere 52, Recall that the metric of the unit two-sphere can be written as

ds? = d6? + sin?(9) d¢®, (3.1)
where 8 € [0, 7] and ¢ € [0, 27).

For an n-dimensional Riemannian manifold M we define the volume V(M) of M with respect
to the Levi-Civita tensor as
V(M] / €= / V]gldix. (3.2)
M M

(a) (2 points) Using (3.2), compute the volume V[S?] of the unit two-sphere.

For a two-dimensional compact, orientable. Riemannian manifold M (without boundary), we define
the Fuler characteristic x(M) as

(M) = 4%/\4 V0glR d%z (3.3)

where R denotes the Ricei scalar. According to the Gauss-Bonnet theorem. there is a relation between
(M) and the genus g of M defined by

Y(M)=2-2g. (3.4)
Intuitively, g counts the number of ‘holes™ in M.

(b) (2 points) Using (3.3) and (3.4). compute the Euler characteristic of the unit two-sphere as well
as its genus. According to your result, how many ‘holes’ does the two-sphere have?

For an n-dimensional orientable, Riemannian manifold M with boundary M and a vector field V#
on M, Stokes’ theorem states that

f d"ﬂ:\/|g|V‘,V“=/ d" 'y |yIn VH (3.5)
M

am

where 4 denotes the induced metric on dM and n# is the unit normal to the boundary.
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(c) (3 points) Choose M to be the upper hemisphere of the two-sphere, i.e. the space obtained by
restricting 8 € [0, ’;], and consider the vector field

a 0

V=a—9'+a—¢.

(3.6)

Explicitly verify that Stokes’ theorem holds in this case, by evaluating both sides of (3.5)
independently.

B PROBLEM 4 The Misner space (16 points + 2 bonus points)

The Misner space is a two-dimensional spacetime that allows for closed timelike curves (CTSs).
Namely, the causal structure of the spacetime admits curves — for instance traced by the worldline
{geodesic) of moving objects - that come back to their starting spacetime point. Said differently,
the Misner space allows for ‘time travel’ In the following, we will first show how the Misner space is
constructed, and then we will examine its causal structure.

Construction of the Misner space. Analogously to Rindler space, the Misner spacetime can be
covered by some portions of the Minkowski space as follows. Consider the two-dimensional Minkowski
spacetime, with timelike coordinate ¢ and spacelike coordinate z, with metric,

ds? = —dt® + dz?, (4.1)

in units in which ¢ = 1. We subdivide the Minkowski spacetime in four regions bounded by the lines
t = Xz, as in Figure 1.

Figure 1

The Misner space is described by two coordinates, T and z, that are related to the Minkowkski
space coordinates t and z via the following relations:

(1) t=-2v/—Tcoshz () : t = 2v/T sinh z
' x=—-2V—Tsinhz ’ i = Zﬁcoshz k

with (1) defined for T < 0, —o0 < z < co and (2) for T > 0, —00 < 2 < o0.

(4.2)

(a) (2 points) Varying T and 2 in their domains, one cannot span the full Minkowski spacetime.
Which regions of Minkowski spacetime, among those depicted in Figure 1, are covered by the
(T, z) coordinates defined by (1) and which by (2) in Eq. (4.2)?



(b) {2 points) In the regions identified in (a), sketch a couple of curves corresponding to constant
T coordinate, as well as a couple of curves corresponding to constant z coordinate. Are these
curves timelike or spacelike when viewed in the (¢, z} coordinates?

(¢) (2 points) Show that the metric induced in the Misner space by both (1) and (2).in (4.2) is

0 3
ds? = d;: — 4Td2*. (4.3)

This metric does not yet completely specify the Misner space. In order to complete the description
of the Misner universe, one has to introduce a nontrivial topology. This is achieved by identifying
points that satisfy two conditions: (A) they are associated to the same T' coordinate and (B) they
are related via a boost with velocity v = tanh(¢%) in the Minkowski space.

(d) (2 points) Show that the identification of points above leads to the identification of z-coordinates
2~ 2+ iy
Hint: The following identities are useful: cosh(a) cosh(b) + sinh(a)sinh(b) = cosh(a £ b) and
sinh(a) cosh(b) & cosh(a) sinh(b) = sinh(a £ b).

It is convenient to introduce an additional change of variable, that replaces the coordinate z with
the coordinate ¢ defined as,

o=z~ 5 log((T]). (4.4)

(e) (2 points) Show that the change of variable (4.4) leads to the following metric for the Misner
Universe: :
ds? = —4dTdy — 4Tdy? . . (4.3)

For which ranges of parameters T and ¢ is the metric (4.5) valid? Show that the identification
induced by the boosts explained above corresponds to the identification ¥ ~ ¥ + . The
metric (4.5), together with this identification, defines the Misner space.

Causality in the Misner Universe. In the following, we will study how the Misner Universe may allow
for closed timelike curves.

(f) (2 points) Compute the light-cones in the (T, 4))-coordinates and sketch themn.

(g) (2 points) Show that a timelike geoclesic that is in the Minkowski space deseribed by the equa-
tion & == g, for some constant xy, has the following functional fonn in the (7, v)-coordinates:

T(Y) = zoe ¥ —e 2¥. | (4.6)

(h) (2 points + 2 bonus points) Show that for an appropriate range of values of zo there can be’
geodesics that, starting at a point (T,v), they can end at an equivalent spacetime point (7", ¢'),
such that 77 = T and @' # 1. Based on what was said above, argue that such geodesics can
be used to construct closed timelike curves (CTCs). Moreover, argue that the topology of the
Misner space M is homeomorphic to that of R x S,

Hint: Solve Eq. (4.6) for ¥ = ¥(T,zo) and then investigate for which values of T and o the
conditions for the existence of CTCs are satisfied. Write down explicitly these conditions.



