GENERAL RELATIVITY FINAL
03.02.2023, from 13:30 - 16.30 in EDUC - GAMMA & BBG 2.23 (extra time)

Please write your solutions for each problem on a separate sheet of paper and write your name and
student number on each sheet! You have 3 hours. Good luck!

e In this exam we work in units in which ¢ = 1. The exam counts as 40% of the grade and
contains in total 40 points. In this exam, Gy = 6.67 x 10 "'m3s72kg~! denotes Newton's
gravitational constant.

Points: 8 (problem 1) + 10 (problem 2) + 5 (problem 3) + 17 + 3 bonus {problem 4)
= 40 + 3 bonus (in total)

8@ PROBLEM 1 Theoretical questions. (8 points)

Answer the following questions concisely:
(a) (2 points) State the Birkhoff theorem.
(b) (2 points) What is the set of points where the vector 8,7 is null in black hole spacetimes?

(c) (2 points) Which mathematical object can be used to establish that a black hole spacetime
possesses a singularity or singularities?

(d) (2 points) Describe briefly the experimental setup used by the LIGO/Virgo Collaboration to
measure gravitational waves.

8 PROBLEM 2 Palatini formalism. (10 points)

The Einstein equation can be derived by varying the action S = Sgg + Snyaer With respect to the
metric, where the Einstein-Hilbert action is considered a functional of the metric only. That means
we have expressed the connection in terms of the metric (Christoffel connection).

The Einstein equation can also be derived by treating the metric and connection as independent
degrees of freedom, and varying the action with respect to them separately. This is know as the
Palatini formalism, for which the Einstein-Hilbert action can be written as,

_ 1 4 ny .
SEn = 167G /d zv/—9 9" R, (') , (2.1)

where G is Newton’s constant, g** is the inverse metric tensor, g = det[g,,] and the Ricci tensor
Ry, depends on the (unspecified) connection I'},, in the usual way,

Ryu(D) = 82 R%,(T) = 6£(85T%, + T, — 0,T%, —T3,I%,) (2.2)
(a) (2 points) Show that the variation with respect to the metric leads to the Einstein equation
G = 87GNT,, . (2.3)

Note that the Einstein tensor G, is defined in terms of the Ricci tensor in the usual way,
which in turn depends on the yet unspecified connection as in (2.2). In order for this equation
to make sense we need to vary the action with respect to the connection.
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In the remainder of this problem you will show that, if we assume a torsionless connection, l"iw] =0,
the variational principle tells us it also has to be metric compatible, i.e. Vog* = 0. This then leads
to {2.3) being the standard Einstein equation for the metric.

b) (1 point) Write down the variation of the Ricci tensor d R, (I') with respect to the connection.
. 4 m

(c) (2 points) Utilizing (ordinary) partial integration show that the requirement that the Einstein-
Hilbert action be stationary under variation with respect to the connection implies the following
relation
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(2.4)
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Note that we cannot use the covariant version of Stokes’ theorem, since it only works for the
Christoffel connection, and here the connection is general.

(d) (2 points) Recall next the following identity,

1 1
. g = —- pA
\/_Eam/ 2g!,,\a,lg,: } (2.5)

Using (2.5) and the definition of the covariant derivative, rewrite all the partial derivatives in
(2.4) in terms of covariant ones, and show that the condition (2.4) reduces to

1 1
0=—-V.g"+ 'égpugpavagm + 6; [v)\gm\ - Eg#‘\gpov/\gpa . (2'6)

(€) (3 points) By appropriate contractions of (2.6) with the metric tensor show that (2.6) implies
Vag"’' =0, (2.7)

that is, the Palatini variational principle implies metric compatibility.
Hint: The appropriate contractions of (2.6) are g, and then 4.

B PROBLEM 3 Fierz-Pauli action. (§ poinis)

In this problem you will construct the gauge-invariant action for a massless spin-2 particle, known
as the Fierz-Pauli action.
To begin, consider a slightly perturbed Minkowski space,

QMV(I) = N + huo(Z) (3.1)

where 7, = diag(—1,1,1, 1) is the canonical Minkowski metric, and A, is a small perturbation,
|hu| <€ 1 (¥ p,v). Under the infinitesimal diffeomorphism transformation (which is an active
coordinate transformation, as opposed to a passive one), the metric perturbation transforms as

R (@) = R (7) = hyu(z) — 8u6(x) — BEu(2) (3.2)

where h,, are {, are of the same order.



One can show that the only Lorentz scalars of the form dh x Oh are,
Ophu O h* Ophy 3" WM O,h* ¥ hy, O.h* O,h d"hd,h, (3.3)

where h = 7*Phas = hY is the trace of the tensor h,s and indices are raised/lowered using the
Minkowski metric. Based on (3.3), one can show that - up to boundary terms - the quadratic
gravitational action is,

5= / 0z (@10huu P B + 00,08 B + 3D, h Oyh + ad*hd,h) (3.4)

where ay, az, az and a4 are constant real numbers (coupling constants).
Now we want to impose the gauge symmetry of linearized gravity, namely the condition that the
action (3.4) has to be invariant under infinitesimal transformations of the form (3.2).

(a) (4 points) Show that imposing gauge invariance of the action (3.4) constrains all the coefficients
a; except for the overal normalization a,, reducing the action to,

. / A4z (8hy R — 20,0, 0" hHP + 20,h* Pk — &*hd,h) . (3.5)

The gauge-invariant action (3.5) is known as the Fierz-Pauli action (1939).

Hint: Using integration by parts when necessary, show that under (3.2), the action (3.4)
transforms as S — S with

§=5 - f 0% (401 + 202)0,hywBOHEY + (205 + 203)0,h D E” + (205 + 4ag)*hD,B,E"]
+ f a2 (20, + a2)0P0"€70, (D6, + B,6,) + (2az + das + 4as) 0,0,6° 9,67 . (3.6)

Then observe that the conditions a; = —2a,, a3 = 2a, and a4y = —ay, which make the first
integral of Eq. (3.6) vanish, also give zero for the second integral of Eq. (3.6).

(b) (1 point) Show that in the traceless-transverse gauge, in which hg, = 0, hy — h,?;.T, with
&hLT = 0 and 6;;ALT = 0, the action (3.5) reduces to,

Srp = a1 f d‘*a;(a,,hg;?"aﬂh,?f) , (3.7)

which can be used to derive the vacuum wave equation for gravitational waves.

B PROBLEM 4 Light deflection in a black hole spacetime. (17 points + & bonus points)

The Schwarzschild line element (in units ¢ = 1) is,

2
ds? = — (1 - TTS) de? + lcfﬁ +r2dQ?, (4.1)

where the Schwarzschild radius rg is given in terms of the mass M of the gravitating object as
rs = 2Gy M, and we have defined dQ? = d¥? + sin® 9dy?.



(a) (8 points) Consider a redefinition of the radial coordinate
rs 2
=7 (1 —) , .
T r( S (4.2)
which is made bijective by mapping the interval » > rg to 7 > rs/4. Show that, in terms of
the coordinates (¢,7, 9, ), the line element takes the form

ds® = — G;?‘g)zdt2+ (1+Zi)4 (dr2+r2d92). (4.3)

The new coordinate system is called isotropic coordinates. Can you justify this name?
Hint: Notice that the spatial part of the metric (4.3) is proportional to d7? + 72dZ.

(b) (2 points) Show that, far from the source where 7 > rg, the metric can be approximated at
leading order in rg/7 by

ds* = gudardz’ = - (1- ") a + (1+ %"") (4 + 72a0?). (4.4)

Does this result make sense in view of the Newtonian limit?
Hint: Recall the asymptotic form of the metric in terms of the gravitational potential.

In the following, you will study deflection of light in the approximate metric (4.4), by analyzing null
geodesics z#{\) parametrized by an affine parameter A,

As usual, symimetries of the metric (4.4) play an important role because they provide conserved
quantities along the geodesics. First, from two of the Killing vectors associated to spherical symmetry,
the motion takes place on a plane. Without loss of generality, this can be taken to be the equatorial
plane

==, (4.5)

(c) (3 points)

e Compute the conserved magnitude of the angular momentum L = R#dj—; where R = 0,
is the remaining rotational Killing vector (in components R* = (0, 0,0, 1)).

e Compute also the conserved energy £ = —K‘,%@; where K = ¢, is the Killing vector
associated to invariance of the metric (4.4) under time translations (in components K* =
(1,0,0,0)).

e Use these relations to obtain %‘f and g—; as functions of 7. Assume that the condition

rg & 7 is respected on the full path of light and work at leading order in rs/7. You
should get, within this approximation,

j—i:%(l—%). (4.6)
3—;=E(1+%S) , (4.7)

(d) (2 points) Now impose the null trajectory condition, which must be respected by light, in the
metric (4.4),
dz# dz”
g‘wd_/\E\F =Y
and substitute equations (4.7) and (4.6) to get (again at leading order in rg/7)

(df)2=32—{’—2(1—2§) . (4.9)

(4.8)

dA
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(e)

(1 point) Combine equations (4.9) and (4.6) to obtain the following approximate equation for

the trajectory: \
dr ?:4 s 2
— | == — r 4.
(dw) b2(1+2f) 72, (4.10)

where b = L/F is called the impact parameter.

Consider a beam of light with L > 0 (and E > 0} incoming from large distance ¥ — oo and choose
w = 0 at that faraway initial condition.

()

(g)

(8 points) Before solving Eq. (4.10) it is useful to understand the meaning of the impact
parameter b. First assume that there is no source mass at the origin of the coordinate system,
t.e. assume that r¢ = 0. Then we expect light to follow a straight path. Check that, when
rs = 0, the equation (4.10) is solved by 7sin¢ = b. Argue that this is indeed the equation of a
straight line and that the impact parameter b is the minimum distance from the origin reached.
Sketch this straight line and explain the meaning of the impact parameter.

(8 points) Now consider rg # 0. It is convenient to trade r for the new variable u = rg/r.
Show that Eq. (4.10) is equivalent to,

(g_:)z = () a2 - . (411)

Show that the minimum coordinate distance F,;, from the source reached in this case is

Foin = /02 + 7% — 15, (4.12)

This is consistent with the assumed approximation that for all points of the trajectory 7 > rg,
provided that b > rs. Why?

The variable 7 starts from large values (¥ — oo), decreases down to its minimum value 7, and then
grows again reaching asymptotically a new straight line. Clearly the trajectory is symmetric with
respect to the straight line connecting the source M (the origin) to the point of minimum distance,
so it is sufficient to study the first half of the trajectory, namely when the light beam coming from
infinity approaches the mass source until reaching a minimum distance.

(h) (3 bonus points) Integrate Eq. (4.11) in the first half of the travel to show that, at the minimum

distance, ¢ is given by

T : s\ T, Ts
O(Fmin) = 5 } arcsm( ) = + b (4.13)

N
where in the last step we used the consistency requirement rs < b found in Question (g).

Argue, by sketching a figure, that the total deflection angle of light, including the second half

of the travel, is then 9 GuM
Ap = 2p(Trin) — T = % = gﬂ ' 10

Hint: Pay attention to choosing the right sign in front of the integral and remember the initial
condition ¢ = 0 at ¥ — oo. The following indefinite integral is needed, with « = rg/b,

du o u - a’ e
\/coz2(1+2u)—u2_arcSln avl+a?/’ (4.15)






