Final exam for Cosmology (NS-TP430M)

From 10am-1pm on Wed July 3, 2013, in BBG 066.

In total: 40 points = 40, of the final grade + 5 bonus pts. It is a closed books, 3 hours exam.
Good luck!

1. Theoretical questions. (8 points)

(a) (2 points) Big Bang Nucleosynthesis.

Name the main isotopes produced at primordial nucleosynthesis (BBN). For which isotopes observations

show agreement and for which disagreement with observations?
(b) (2 points) Inflation.

Inflation requires a “flat potential.” Explain what a flat potential means, and which observation or

observations demand it.

(c) (2 points) QCD transition.

What symmetry gets broken by the QCD chiral condensate in the early Universe. Explain!

(d) (2 points) Cosmological perturbations. The Planck satellite data constrain the spectrum of scalar cos-
mological perturbations to be nearly scale invariant (with a more than five standard deviations evidence
for a deviation from scale invariance). Explain what kind of inflationary model would produce a scale

invariant spectrum (to a very high precision). Is there any theoretical obstacle that forbids the spectrum

to be exactly scale invariant?

2. An empty Universe with cosmological constant. (6 points)

Solve the Friedmann equation for an empty homogeneous expanding universe with a cosmological term A,

for which the Friedmann equation is given by
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where x denotes the curvature of the spatial section of space-time.
Discuss the solutions in both cases: when x = 1/R2, | > 0 and when k = —1/R2,, < 0, where Roury

denotes the (comoving) radius of curvature of the Universe. Show in particular that,
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such that in the limit @ — oo the Universe becomes spatially flat. Discuss how this result can be used to solve
the flatness problem of the Universe.

Hint: The following integrals may be useful:

/ \/_a:'?——_l = Arcosh(z) , / \/% = Arsinh(z). 4)

3. Relativistic degrees of freedom. (4 points)

Calculate the effective number of relativistic degrees of freedom g, in the Minimal Supersymmetric Standard
Model (MSSM) of elementary particles. Assume that all particles are relativistic (which is the case when
kBT > Eew =~ 100 GeV), in thermal equilibrium at the same temperature.

Hint: Recall that in a supersymmetric theory the degrees of freedom are doubled, such that to each fermionic

(bosonic) degree of freedom one adds a bosonic (fermionic) degree of freedom. In addition, the MSSM has two
complex Higgs doublets.

4. The entropy of the Universe. (4 points)
Prove that the (thermodynamic) entropy of the Universe is conserved.

Hint: You may assume the expansion of the Universe to be adiabatic.

5. Slow roll inflation. (10 points + 3 bonus points)

Consider the slow roll regime of a single scalar field inflationary model whose action, Lagrangian and potential

are,
1
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In this problem work in units = 1 = ¢, in which the reduced Planck mass equals M2 = 1/(87Gy).

(a) (8 points) Starting with the equation of motion for the inflaton and the Friedmann equation written in
the slow roll regime show that the inflaton (homogeneous background field) evolves as,

a(t)= 221 ( X SR t). (6)
(b) (2 points) Show next that
—ao(t/to)¥ ,  (a0=alto)). )

(c) (1 point) Show that the number of e-foldings

N@)=-33 lnt(t/to) = —In(a/ao), (8)

where %o denotes the end of inflation (at which N = 0).



(d) (4 points) Find an expression for the scalar spectral index (n,) and for the tensor (graviton) spectral
index (ny) for this model. Recall their definitions,
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where a star (x) refers to the first Hubble crossing of a mode k = k. during inflation (k. = (Ha)s =
H(ty)a(t,)). Work at the leading order in slow roll approximation. Recall also the definitions

H2, n=—ﬁ~$+€. (10)
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(e) (3 bonus points) This problem can be solved without making a slow roll approximation, i.e. the equations
of motion for ¢(t) and H(t) can be simultaneously and exactly solved. Start with an Ansatz, ¢(t) =
(2Mp /) In(6t) and find an equation for 8. A useful quantity to introduce is y = (A2Vp)/(2M2(?). Show
that this quantity obeys the following quadratic equation,

y2+2(1—%)y+(1—%)=0. (11).

There are two solutions, y4 to this quadratic equation, of which only one — y; — is physical. Discuss
the limit for the resulting B} and in which one obtains the slow roll solution from the first part of the
problem. What is the condition on A, which guarantees that one gets slow inflation? In addition, show
that the solution of Eq. (11) implies € = A2/2, ¢ = 0, such that the slow roll approximation reproduces

in this particular case an exact result for the scale factor (7).

6. Quantization of a massless scalar field in matter era. (8 points + 2 bonus points)

Counsider a massless minimally coupled real scalar field with the action,
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where g = det|[g,,] is the determinant of the metric. In a FLRW cosmology the metric tensor, when expressed

in conformal coordinates, is of the form,
Quv = azn,,,,, N = diag(1,-1,-1,-1), (13)
where a = a(7) denotes the scale factor, and 7 is conformal time. In matter era the scale factor is of the form,
a(n) = ao(n/m)®,  ao=a(m). (14)

(a) (2 points) By varying the action (12) in the space-time (13), show that the equation of motion for the
scalar field reads,
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The scalar field ¢ can be promoted to an operator, ¢ — ¢, by the canonical quantization,
[8(,n), 7p(Z', m)] = +h6*(Z — &) (16)

where 7ty = 2d(f)/ dn denotes the canonical momentum of é. This can be achieved by the following decomposi-

tion,
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where &; and &}; denote the annihilation and creation operators, and () and ¢}, are the mode functions, which
due to the homogeneity of the background space (one assumes a spatial translation invariance of the state),

depend only on the modulus k = ||k|l. The annihilation and creation operators satisfy the commutation

relations,
lag. aL,] = h2m)*s* (R - B'),  [ag.ag)=0, lal,al)=0. (18)

In particular, the annihilation operator &; annihilates the vacuum, ag|Q2) = 0, while the creation operator &;’.6

creates one particle excitation of momentum & out of the vacuum, &1,;.|Q) = |1z). Show that the mode functions

wr and tp;fc obey the following Wronskian normalization condition,
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(b) (1 point) Show that the mode functions ¢, in a FLRW space-time (13) obey the following equation of
motion,
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(c) (2 points) Show that during matter era in which a(7) is given in (14), Eq. (20) reduces to
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and show further that the fundamental positive and negative frequency solutions are (the Bunch-Davies

vacuum) are
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These mode functions are identical in form to the solutions in de Sitter space. Show that the mode

normalization, 1/(av/2k), follows from the Wronskian (19).

(d) (2 points) The power spectrum P, of the scalar field fluctuations can be defined by
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Calculate the power spectrum in matter era and show that it can be written as
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Is this spectrum scale invariant on super-Hubble scales? Justify your answer.

(e) (2 bonus points) Based on your answer to question (d), what do you think: do we still need inflation?



