Midterm for Cosmology (ns-tp430m)
Apr 17 at 9am-12pm 2014 in GAMMA of Educatorium (30 points, 30%)

Please solve each problem on a separate sheet of paper and write your name and student number

on each sheet! You may use a caleulator.

1. Theoretical questions. (6 points) Provide concise answers to the following questions:

(a) (1.5 points) Name two gravitational tests that test general relativity that involve rotating

bodies. (These effects are due to rotation, and they are not present in Newton’s theory.)
(b) (1.5 points) Name two pieces of evidence for Universe’s homogeneity on large scales.

(c) (1.5 points) Bicep 2 has recently observed a parity violating (B-mode) polarization in the CMB
photons of a primordial origin. According to the standard cosmological theory, what causes

these parity violating polarization effects?
(d) (1.5 points) Define the flatness problem (for our Universe)!

2. Gravitational redshift. (4 points)

An asymptotic observer is observing photons that come from an accretion of a Schwarzschild
(non-rotating) black hole, whose metric is g, = diag((142¢/c*), —(1+2¢/c%)t, —r?, —r2sin(4)),
with ¢ = —~GyM/r, and is wondering how close to the event horizon photons must originate in order
to exhibit a redshift 2. Show that the answer to this question is,
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where rg = (2GNM)/c? is the Schwarzschild radius of the black hole. Calculate §r for a black hole
with radius rg¢ = 10 km and the redshift corresponding to photon decoupling, z = zgee = 1090.
Estimate the redshift exhibited by photons in the Pound-Rebka experiment. This problem illustrates
how strong is the gravitational field in an expanding universe.

Hint: You may use that the photons in the Pound-Rebka experiment climbed about 100 m in a

gravitational field ¢y =~ 107%2. The Earth’s radius is about Rg ~ 6370 km.

3. Kination in a spatially curved universe. (7 points)

Consider a massless homogeneous scalar field ¢(¢), whose action is given by,
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where g = det{g,,| and g,, = diag(l, —a?/(1 - kr?), —a®r?, —a*r? sinz(é’)).
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(2 points) Show that the energy density, pressure and equation of motion for the scalar field
are given by,
1. 1., - :
pp = 50" 7’¢:§¢2; ¢+3Hp=0. (3)

(3 points)

Solve the corresponding Friedmann equation for the scale factor in conformal time, a = a(n).

Consider both cases x > 0 and x < 0, i.e. show that

1

a(n) = ap {sin(?c\/r‘cn)}% (>0), a(n) =ap [Sinh(Qc\/rfzn)] : (k< 0), aé %Ci_‘lvj_q .
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dx

Hint: The following integrals you may find useful: [ Ty = Arsinh(z), [ —% = Arcsin(z).

(2 points) Sketch the corresponding conformal diagrams for x > 0 and for £ < 0. Discuss in

particular in which case(s) Big Bang and Big Crunch singularities occur.

. The age of the Universe. (6 points)

(2 points) The Hubble parameter today is Hy =~ 68km/s/Mpc. Express Hp in inverse seconds
and in giga-electron volts (GeV), i.e. show that Hg o 2.20 x 10718 s78 ~ 3.35 x 107 eVh ™.
Estimate the age of the Universe as t, =~ 1/Hy (express it in giga-years, Gy).

Hint: Use the following unit conversions: 1 Mpc = 3.0857 x 10'% km, 1 s = 1.51927 x 10" fi/eV.

(4 points)

In order to find out a more precise value of the age of the Universe, solve the Friedmann

equation,
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and show by integrating equation (5) that the scale factor reads
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where a(0) = 0, a(ty) = 1, pu(t) = pmo/a(t)® (nonrelativistic matter). By inverting this
expression, show that the age of the Universe can be written as,
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where Q5 = A/(3H?). Do you get the expected result in the limit when Q4 — 0?7 What is
ty for the Planck value 24 = 0.69 £ 0.027 How does your result compare with the age of the

Universe quoted by the Planck collaboration, t; = 13.8 £ 0.1 Gy?

Hint: The following integrals you may find useful: f :/% = Arsinh(r).

5. Particle horizons. (7 points)

The line element of space times with a constant curvature can be written as,
2 2 342 2 dr? 2 1092
ds” = c“dt” — a” | —— 4+ r7°dQ5| | (8)

where dQ3 = d6” + sin®(0)d¢? is the surface element of the two-sphere S% (9 € [0, 7], ¢ € [0,2n)),
a = a(t) denotes the scale factor, and x > 0,k = 0,k < 0 for a positively curved, flat or negatively
curved geometry, respectively.

Assume a universe that begins in an inflationary epoch with ¢ = (d/dt)(1/H) = const. and
0 < e < 1, which is followed by a radiation era (that begins at H;_, =~ 10 GeV/h), continues at a
redshift z.q 2 3300 as a matter era up to today (for simplicity neglect the late dark energy dominated
era). You can make use of a sudden matching approximation, that is you can assume that after a

sudden end, inflation is followed by a radiation era, which suddenly converts into a matter era.

(a) (2 points) Show first that the redshift at the end of inflation is, 2, = 1.31 x 10%°,

Hint: Assume that at all times the universe’s evolution can be well approximated by one perfect
fluid, and that it is in thermal equilibrium at all times during radiation era, which means that

Hi o = [(14 2i.)?/(1 + zeq)*] Heq- Also, use unit conversions from problem 4(a) of this exam.

(b) (3 points) By assuming for simplicity £ = 0, show next that in the corresponding eras the

curvature scales as,
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Sketch these curves on a In(€2,) — In(a) diagram. Make sure to make them continuous at the

transition between different eras.

(¢) (2 points) Based on the above results, caleulate by how many time the size of the universe
needs to increase during inflation in order to solve the flatness problem. Assume that today

Q. (tg) = 0.01.

Hint: The Hatness problem is considered solved if €, = I at the beginning of inflation.



Cosmology Formulae Midterm 2013-14

Metric compatibility, covariant derivative and the (Levi-Civita) connection I
, 1
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Geodesic equation and geodesic deviation (X is an affine parameter):
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o et =0t = Te Ry = Rt (2)
Einstein’s equations:
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G;u/ - Zgg;u/ = TTpuv G/J,I/ = Ruy - Eg;wR (3)

Riemann and Ricci tensors (for a symmetric - or Levi-Civita — connection):
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Covariant actions (Hilbert-Einstein and matter):
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Einstein’s equation and matter field equations are obtained by the variation principles:
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Matter actions (scalar, vector, fermionic) [F,, = OuA, — 0,AL V0 = (0, — T )yl
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NB: Spin(or) connection T, is determined by the compatibility condition (v# = et ~+4):
vuf‘/‘u = 6;/)’21 - FZU'\/Q - [ﬂu'Yu + 71/11;1 = () (8)

Stress-energy tensor (general and perfect fluid):

2 48 atter U, .
Tp,u - “\/-“:—? (;;;j/t (Tuu)perf fluid = (,0 + P) # . QWP (9)
Gravitational dilatation and redshift (cosmological redshift: z( t) = (ag/a(t)) — 1): m{‘:ql;u £
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FLRW metric (conformal time: dn = dt/a, Gauss’ curvature R. = 1//|x|):

dr?

ds? = 2dt? — a*(t) (1 + r2d6? + r? sinz(é))dQS?)
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FLRW (Friedmann) equations (H = (d/dt)In(a). a(ty) = ap = 1):
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These come together with a conservation equation, and another form of the 2nd equation:
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The principal slow roll parameter ¢ and the EoS parameter w:
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(Physical) particle horizon (ds = 0) [comoving horizon £ = {phy/al:

r , T drf
Conys = / V grr(r)dr’ = a(t)/ Ny ac(n = Tin)
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NB: 7y, = initial radius (may be zero); Hubble radius: Rg = ¢/H, Hubble time: ty = 1/H.

Friedmann equation and relative densities 2, for today (t = to, Ho = H(to)):
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The age of the Universe (in conformal time: multiply the integrand by 1/a):
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Apparent and absolute magnitudes; luminosity distance d;:
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Luminosity distance in various geometries:
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with (here €; are defined today at t = #g)
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