Re-exam Probabilistic Reasoning

15 January 2020, 17:00 - 20:00

The exam consists of three problems, with independent subproblems; in total a maximum of 100 points is awarded. Read the questions very carefully and clearly explain your answers (in English and/or Dutch).

Good luck!

Problem 1 (a: 5 pts., b: 10 pts., c: 10 pts., d: 10 pts., total: 35 pts.)

a. Consider using *Pearl's data fusion algorithm* and its computation rules (see attached formula sheet) on a given Bayesian network \mathcal{B} . Is the following statement true or false?

"For all non-observed nodes V_i in \mathcal{B} , it holds that $\lambda(v_i) + \lambda(\neg v_i) = 1$."

Clearly explain your answer.

b. Consider the Bayesian network $\mathcal{B} = (G, \Gamma)$ with the following acyclic digraph G and assessment functions Γ (complements omitted):

Suppose that the evidence $V_4 = true$ is entered into \mathcal{B} . Illustrate Pearl's algorithm by computing the posterior probability $\Pr^{v_4}(v_2)$ from the network. Explicitly list the values of all separate and compound causal and diagnostic parameters used; if you use properties other than Pearl's computation rules, explicitly indicate and explain these.

- c. Consider again the Bayesian network \mathcal{B} from part b. Suppose that, after propagating the evidence $V_4 = true$, the additional evidence $V_3 = false$ is entered. Clearly list all separate and compound causal and diagnostic parameters which will change value as a consequence of propagating this additional evidence. For each of these parameters, describe which of their terms will change value or will be newly inserted; it is not necessary to do the actual computations involved.
- d. Consider again the network \mathcal{B} from part b. Can the probability $p = \Pr^{v_4}(v_1 \vee v_2)$ be computed from \mathcal{B} by means of Pearl's data fusion algorithm? Choose one of the following possible answers, and clearly explain why your choice is the correct answer:
 - I Yes, p can be computed directly from \mathcal{B} by a single application of Pearl's algorithm.
 - II Yes, p can be computed indirectly from \mathcal{B} by combining the results from multiple consecutive applications of Pearl's algorithm.
 - III No, Pearl's algorithm cannot be used since it cannot yield any probabilities from which p can be established.

Problem 2 (a: 10 pts., b: 10 pts., c: 10 pts., total: 30 pts.)

Suppose you want to construct a Bayesian network from a data set D using a learning algorithm that combines a search heuristic with the MDL quality measure (see formula sheet). Here we consider two different search heuristics:

- the B search heuristic: starts with an empty graph and subsequently adds arcs that
 result in the largest increase in quality;
- the \overline{B} search heuristic: starts with a *complete* acyclic directed graph and *removes* arcs that result in the largest increase in quality.

Consider the following data set D over binary-valued random variables $V = \{V_1, V_2, V_3\}$:

$\neg v_1 \wedge \neg v_2 \wedge \neg v_3$	$\neg v_1 \wedge \neg v_2 \wedge \neg v_3$	$\neg v_1 \wedge \neg v_2 \wedge v_3$
$v_1 \wedge \neg v_2 \wedge v_3$	$\neg v_1 \wedge v_2 \wedge v_3$	$\neg v_1 \wedge \neg v_2 \wedge \neg v_3$
$\neg v_1 \land \neg v_2 \land \neg v_3$	$\neg v_1 \wedge v_2 \wedge v_3$	$\neg v_1 \wedge \neg v_2 \wedge \neg v_3$
$\neg v_1 \land \neg v_2 \land \neg v_3$	$\neg v_1 \wedge v_2 \wedge \neg v_3$	$\neg v_1 \wedge v_2 \wedge \neg v_3$
$v_1 \wedge \neg v_2 \wedge \neg v_3$	$\neg v_1 \wedge \neg v_2 \wedge \neg v_3$	$\neg v_1 \land v_2 \land \neg v_3$

There is no further information available about V_1, V_2 and V_3 , and how they are related.

a. Suppose that for constructing the digraph of the network, the \overline{B} search heuristic is used. Let the heuristic start with the following complete graph:

$$G = (\{V_1, V_2, V_3\}, \{V_1 \to V_2, V_1 \to V_3, V_2 \to V_3\})$$

The node quality for node V_3 in this graph equals: -5.7247 (using base-10 log).

Compute the change in quality due to removing arc $V_1 \to V_3$ from G; assume that P(G) is constant. Will the arc indeed be removed? Clearly explain your answers.

b. Now suppose we have used both search heuristics and compare their results. Let G denote the acyclic digraph that results using the B search heuristic, and let \overline{G} denote the digraph resulting from the \overline{B} heuristic.

Will, in general, $G = \overline{G}$? Clearly explain your answer.

c. Suppose that in the learned network $\rho(V_2) = \emptyset$. A domain expert, however, indicates that she expects an arc $V_1 \to V_2$. You wonder whether you could use an *n*-way sensitivity analysis to simulate the possible differences between presence or absence of this arc on the output of the network.

Is it indeed possible to employ a sensitivity analysis for this purpose? If so, clearly describe how you would do that. If not, clearly explain the reason(s).

2018-2019

4 Network science
3 18 15 data/es
2 ex pn
1 dula mining

2017-2018 1 ADS 2 CPD/ARN \$3---

1

Problem 3 (a: 10 pts., b: 10 pts., c: 10 pts., d: 5 pts., total: 35 pts.)

a. Consider the following directed acyclic digraph G:

and the independence relation I defined on $V = \{V_1, V_2, V_3, V_4\}$ by the following statements (and any statements that can be derived from them using the axioms):

$$I(\{V_1\}, \emptyset, \{V_2, V_3\})$$
 and $I(\{V_2\}, \{V_4\}, \{V_3\})$

Graph G is an I-map of independence relation I. Suppose we construct graph G^- by removing arc $V_2 \to V_3$ from G. Which of the following statements is true for G^- ? Explain your answer.

I G^- is an I-map for I, but not a D-map

II G^- is not an I-map for I, but it is a D-map

III G^- is neither an I-map nor a D-map

IV G^- is a P-map

- b. Consider Bayesian network $\mathcal{B} = (G^+, \Gamma)$ where graph G^+ is the result of adding arc $V_3 \to V_1$ to graph G from part a.
 - = Give a minimal loop cutset for graph G^+ .
 - Comment on the convenience of your choice of loop cutset for computing the probability $\Pr^{v_1,v_2}(v_4)$ from \mathcal{B} .

Clearly explain your considerations.

c. Consider Bayesian network $\mathcal{B} = (G^-, \Gamma)$ where G^- is the graph from part a (i.e without the arc $V_2 \to V_3$). Γ is (partially) specified by the following (complements omitted):

$$\gamma(v_1) = 0.4$$
 $\gamma(v_4 \mid \neg v_1 \land \neg v_2 \land \neg v_3) = 0.0$ $\gamma(v_4 \mid v_1 \land \neg v_2 \land \neg v_3) = 0.4$ $\gamma(v_2) = 0.5$ $\gamma(v_4 \mid \neg v_1 \land v_2 \land \neg v_3) = 0.7$ $\gamma(v_4 \mid \neg v_1 \land \neg v_2 \land v_3) = 0.8$ $\gamma(v_4 \mid \neg v_1 \land \neg v_2 \land v_3) = 0.8$

Suppose the interaction between node V_4 and its parents V_1, V_2 and V_3 is modelled by a 'noisy-or gate'. Complete the assessment function for node V_4 . Explain your answers.

d. The literature defines a measure of data conflict for observations e_1, \ldots, e_m for a set of m variables, based upon the idea that observations should originate from a coherent case and therefore correlate positively. More specifically, this measure is defined as:

$$\mathsf{confl}(e_1, \dots, e_m) = \log_2 \frac{\Pr(e_1) \cdot \dots \cdot \Pr(e_m)}{\Pr(e_1 \wedge \dots \wedge e_m)}$$

- Determine confl $(v_1, \neg v_2, \neg v_3)$ for network $\mathcal{B} = (G^-, \Gamma)$ from part c.
- Comment on the suitability of this measure in the context of a Bayesian network in which the observable variables are modelled as causes in a noisy-or model.

3

Formulas (Probabilistic Reasoning Exam Jan 2020)

Pearl in a singly connected digraph

Consider a Bayesian network $B = (G, \Gamma)$ and a node V in G with direct ancestors (parents) $\rho(V) = \{A_1, \ldots, A_n\}$ and direct descendants (children) $\sigma(V) = \{D_1, \ldots, D_m\}$.

To compute its (prior or posterior) probability distribution with Pearl's algorithm, node V uses data fusion: $\alpha \cdot \pi(V) \cdot \lambda(V)$ and computes the following parameters for all c_V and c_{A_i} :

$$\begin{split} \pi(V) &= \sum_{c_{\rho(V)}} \left(\gamma \left(V \mid c_{\rho(V)} \right) \cdot \prod_{i=1,\dots,n} \pi_{V}^{A_{i}}(c_{A_{i}}) \right) \\ \lambda(V) &= \prod_{j=1,\dots,m} \lambda_{D_{j}}^{V}(V) \\ \pi_{D_{j}}^{V}(V) &= \alpha \cdot \pi(V) \cdot \prod_{\substack{k=1,\dots,m \\ k \neq j}} \lambda_{D_{k}}^{V}(V) \\ \lambda_{V}^{A_{i}}(A_{i}) &= \alpha \cdot \sum_{c_{V}} \lambda(c_{V}) \cdot \sum_{\substack{c_{\rho(V) \setminus \{A_{i}\}}}} \left(\gamma \left(c_{V} \mid c_{\rho(V) \setminus \{A_{i}\}} \wedge A_{i} \right) \cdot \prod_{\substack{k=1,\dots,n}} \pi_{V}^{A_{k}}(c_{A_{k}}) \right) \end{split}$$

The MDL quality measure

Let $G = (\mathbf{V}_G, \mathbf{A}_G)$ be an acyclic digraph and let \mathbf{D} be a dataset over N cases. Let P(G) be a probability distribution over the set of acyclic graphs with node set \mathbf{V} . Then, the MDL quality measure for graph G is given by

$$\begin{aligned} Q_{MDL}(G, \mathbf{D}) &= \log P(G) - N \cdot H(G, \mathbf{D}) - \frac{1}{2} \log(N) \cdot \sum_{V_i \in V} 2^{|\rho(V_i)|} \\ &= \log P(G) + \sum_{V_i \in V} q(V_i, \rho(V_i), \mathbf{D}) \end{aligned}$$

where $q(V_i, \rho(V_i), \mathbf{D})$ is the quality of node V_i and

$$-N \cdot H(G, \mathbf{D}) = \sum_{V_i \in V} \sum_{c_{V_i}} \sum_{c_{\rho(V_i)}} N(c_{V_i} \wedge c_{\rho(V_i)}) \cdot \log \left(\frac{N(c_{V_i} \wedge c_{\rho(V_i)})}{N(c_{\rho(V_i)})} \right) \qquad (0 \cdot \log \frac{0}{x} = 0, \text{ even if } x = 0)$$