DIT TENTAMEN IS IN ELEKTRONISCHE VORM BESCHIKBAAR GEMAAKT DOOR DE 7B’C VAN A-ESKWADRAAT.
A—-ESKWADRAAT KAN NIET AANSPRAKELIJK WORDEN GESTELD VOOR DE GEVOLGEN VAN EVENTUELE FOUTEN
IN DIT TENTAMEN.
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Analyse in Meer Variabelen
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o Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzij-
den.

o De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van
elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten
daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien
het u niet lukt een bepaald onderdeel te maken en ga gewoon door.

e Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden ge-
bruikt.

o De antwoorden mogen uiteraard in het Nederlands worden gegeven, ook al zijn de vraagstukken
in het Engels geformuleerd.

o De drie vraagstukken tellen NIET evenzwaar: zij tellen voor 35, 25 en 40%, respectievelijk, van
het totaalcijfer.



Exercise 0.1 (Green’s first identity by means of Gauss’ Divergence Theorem). Consider B> =
{zeR?||z]| <1}and g: R? — R givenby g(z) = 27 — 3.

(i) Prove

/32 | grad g(z) | dz = 2.

(ii) Recall that % = (grad g,v ), the derivative in the direction of the outer normal v to B2, and

compute dg
/832 (g %) (y) d1y.

Hint: Use 2(cos? a — sin? a)? = 2cos? 2o = 1 + cos 4a.

The equality of the two integrals above is no accident, as we will presently show. To this end, suppose
h : R? — R to be an arbitrary C? function. Note that i grad h : R? — R? is a C'! vector field and
recall the identity div grad = A.

(iii) Prove div(h grad h) = || grad h||?> + h Ah.

(iv) Suppose 2 C R? satisfies the conditions of Gauss’ Divergence Theorem. Apply this theorem to
verify on
(%) / (h Ah)(x) dz + / | grad h(z)|? do = / (n5) @) diy.
0 Q aa N Ov

(v) Derive (%) in part (iv) directly from Green’s first identity.

(vi) Show that the equality of the integrals in parts (i) and (ii) follows from (%) in part (iv).

Exercise 0.2 (Area of surface in C?). As usual, we identify z = y; + iyo € C withy = (y1,12) €
R?2. In particular, an open set D C C is identified with the corresponding D C R? and a complex-
differentiable function f : D — C with the vector field f = (f1, f2) : D — R2. Thus, we will study
graph(f) C C? in the form of the following set:

V={WfW)eR |ye DCR?} =im(¢)  with
¢:D—R*  givenby  o(y) = (y1,v2, [1(y), f2(y))-
It is obvious that V is a C°° submanifold in R* of dimension 2 and that ¢ is a C*° embedding.

(i) Compute the Euclidean 2-dimensional density wy on V' determined by ¢. Next, use the Cauchy—
Riemann equations D; fi = Dsfo and D; fo = —Ds f1 to show the following identity of func-
tions on R?:

wp =1+ | grad fil* = 1+ | grad fo]*.

Suppose D to be a bounded open Jordan measurable set and deduce
voly (V') = area(D) + / | grad f1(y)||? dy.
D

(ii) Suppose D = {z € C | |2| < 1} and f(z) = 22. Apply the preceding result as well as part (i)
in Exercise 0.2 in order to establish that in this case we have vola(V') = 3.



Exercise 0.3 (Computation of ((2) by successive integration). Define the open set J =] 0,v2[ C
R and the function m : J — R by m(y1) = min(y1, V2 — v1).

(i) Sketch the graph of m. Verify that the open subset {) of R? is a square of area 1 if we set
O={yeR?|yeJ, —my) <y2 <my)}.

(i) Define
1

f:0—=R by f(y):m'

Compute by successive integration

7.[,2
| sy =T

At (\/5, 0), which belongs to the closure in R? of ¢, the integrand f is unbounded. Yet, without
proof one may take the convergence of the integral for granted.

Hint: Write the integral the sum of two integrals, one involving | 0, 3v/2 [ and one | 1v/2,v2 [,
which can be computed to be g—; and 7{—;, respectively. In doing so, use that f(y) = f(y1, —y2).
Furthermore, without proof one may use the following identities, which easily can be verified by

differentiation:

/f(yl,yz)dm = arctan (L)

1
19(y1,2) = ———
1,92 2= 2 22

1 2 Y1
9(y1,y1)dy1 = < arctan <7),
/ 2 2 — o7

\@— Y1
g(y1, V2 — y1)dyr = — arctan? < > .
/ ﬂ+y1

Introduce the open set I =]0,1[ C R, and furthermore the counterclockwise rotation of R? about the
origin by the angle 7 by
2 . 1,1 -1 2 2
U € End(R?)  with qf:7< ) st O=12C R2
N !

(iii) Show that ¥ : $ — [ is a C'*° diffeomorphism and using this fact deduce from part (ii)

1 2
/dx:”.
D1—$1$2 6

1 o 2
/og(l z) do = -2
T x 6

Give arguments that the integrand is a bounded continuous function on I near 0.

(iv) Conclude from part (iii)

(v) Compute [ O (r129)F~1dx, for k € N. Assuming without proof that in this particular case
summation of an infinite series and integration may be interchanged, use part (iii) (or part (iv)) to
show Euler’s celebrated identity

1 72
¢2) =Y ==

keN



Solution of Exercise 0.1

(i) We have grad g(z) = 2(x1, —22) and so || grad g(z)||?> = 4||=||%. Introducing polar coordinates

(r,a)in R?\ { (z1,0) € R? | 1 < 0}, which leads to a C'* change of coordinates, we find

m 1
/32 lgrad g(x)||* dz :/ /0 4r3 dr do = 2n[r*]§ = 2m.

(ii) 0B% = S*, which implies v(y) = y. Therefore

(g gi) (v) = 9W) (21, —12), (y1,52)) = 29(y)*.

Note S! = im(¢) with ¢(a) = (cos @, sin ). Hence wy(ar) = ||(—sina, cosa)|| = 1 and so

/832( ) y) duy

(ii1) We have

div(g grad g) = Z Dj(gDjg) = Z( i9) —|—gD2g)—||gradgH2+gAg
1<5<2 1<5<2

™ ™

2(cos? o — sin” a)? dov = / (1 + cosda) da = 2.

—T

—T

(iv) The assertion follows from application of Gauss’ Divergence Theorem 7.8.5 to the vector field
g grad g; indeed,

/diV(g grad g)(z)dr = /(g(y) grad g(y), V(y)>d1y=/ g(y) (grad g,v)(y) diy
Q o0 o0

/8Q (g %)(y) dyy.

(v) Set f = g in Green’s first identity

/Q(gAf)(x)dx—/ ( gi)( )dn_1y—/g(gradf, grad g )(z) du.

(vi) This follows from Ag =2 —2 = 0.

Solution of Exercise 0.2

(i) According to Lemma 8.3.10.(i) and (ii) the Cauchy—Riemann equations apply to the real and
imaginary parts f; and fy of the holomorphic function f; consequently, we have the following
equality of mappings R2 — Mat(2, R):

1 0

¢_(10D1f1 lez) 0 1
- 0 1 Daoft Dafo Difi Dafy
Dify Dafo

(D¢)' D
— ( 1+ (D1f1)*> +(D1f2)>  Difi Dafi + Difa Dafo >
Difi Dafi + DifaDafa 1+ (Daf1)? + (Dafa)?

1+ || grad fi|? 0
0  1+]gradf1]* )°



(ii)

Indeed, the coefficient of index (2, 1) equals D1 f1 D2 f1 — Do f1 D1 f1 = 0. In view of Defini-
tion 7.3.1. — Theorem we obtain

we = /det (D§)! D) = /(1 + | grad f1[|2)2 = 1 + | grad f1]*.

The last assertion now follows, because
vlo(V) = [ o = [ otwydy= [ (1 llgrad )P

fi(y) = Re(y1+iy2)? = y3—y3 = g(y) with g as in Exercise 0.2. The assertion is a consequence
from area(D) = 7 and part (i) of that exercise.

Solution of Exercise 0.3

®

(i)

(iii)

graph(m) is given by

th-

1 V2
V2

This is an isosceles rectangular triangle of hypothenuse v/2, hence its area equals %

Note J = %J U (%\@ + %J ) while the two subintervals have only one point in common. On
2J and £v/2 + 1 one has m(y1) = y1 and m(y;) = V2 — y;, respectively. Furthermore
f(y) = f(y1,—y2). Therefore, using a generalization of Corollary 6.4.3 on interchanging the
order of integration and the antiderivatives as given in the hint, one obtains

V2 V2 V2-m
/ fo)dy = 2 / /f(y)dyzdy1+2 / / F() dy2 iy
o 0 0 V270

V2 V2

%
= 2/ g(yhyl)dyﬁr?/ g(y1, V2 —y1) dipn
0 1.2

2

1
= arctan2 (\/g) + Zarctan2 (L) — 12 + 12 — ﬂj
B 3 Vv3/ 36 18 12’
2

Ty 1
because tan(f) = 7
The rotations ¥ and W~ are bijective and C*°; hence, ¥ is a C*° diffeomorphism. From the
description of U as a specific rotation one gets ¥(¢) = O. Thus, ¥ : ¢ — O isa C
diffeomorphism. Observe that, for y € ¢ and x = ¥(y) € O,

1 1
= =2f(y and det DV (y)| = 1.
L—ziza  1—3(y1 —y2) (1 +2) (@) | (@)l

Application of the Change of Variables Theorem 6.6.1 now leads to the desired equality.



(iv) Note that

/I 1 doy — [_ log(1 — xlxg)]l _log(1—x1)

1— Ir1x2 I 0 Tl

Since [J = I x I, one obtains the desired formula by means of Corollary 6.4.3 once more. Taylor
series expansion of the integrand about 0 shows that it equals —1 + O(x), for z | 0.

2 1
/ x’f_lxg_l dr = (/a:kl da:) =5
O I k

Summation of the geometric series leads to

1
k—1
E (x172) =1ty

keN

(v) Obviously

Integrating the equality over [J and interchanging summation of an infinite series and integration
one finds, on the basis of part (iii)

1 b1 1 T
S E- Y f@a) s [ o —a= T

keN keEN

Background. Compare this exercise with Exercise 6.39. Note that the definition of the integral in part
(ii) needs some care, as the integrand f becomes infinite at the corner (ﬂ ,0) of the closure of ¢. Since
f is continuous and positive on the open set <), in order to prove convergence of the integral it suffices
to show the existence of an increasing sequence of compact Jordan measurable sets K C ¢ such that
Uren K = O and that the f K f(y) dy exist and converge as k — oo, see Theorem 6.10.6. One may

do this, by choosing the subsets K to be the closures of the contracted squares k—gl 0.
Next, the antiderivatives in part (ii) may be computed as follows. For the first one, write

1 d y

1
VI () A2

2—y%

Y2

\/2—y%7

f()

andset  u=u(y2) =

further, use [ Hﬁ du = arctan u. For the second antiderivative, apply the change of variables

2 \/i dyl_ \/5
2-yi=——"7, =

Y1
V=" = — SO = \/§ 3 -
(l/l) 1 (1 UQ)% dv (1 02)%

v
2—y%, V142

Thus,

t 1
/g(ylayl)dyl = /de = iarctanQU.

For the third antiderivative, apply the change of variables

2_
w:w(yl):M SO y1:\@

«/2—y%’

t
[ty = 2 [ HEEL 4y =~ arcton w,
w

1— w? _ 2y/2w dyi 42w
1+ w?’

L7 ] 4w’ dv (1 +w?)?

Thus,



