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• Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzij-
den.

• De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van
elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten
daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien
het u niet lukt een bepaald onderdeel te maken en ga gewoon door.

• Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden ge-
bruikt.

• De antwoorden mogen uiteraard in het Nederlands worden gegeven, ook al zijn de vraagstukken
in het Engels geformuleerd.

• De drie vraagstukken tellen NIET evenzwaar: zij tellen voor 35, 25 en 40%, respectievelijk, van
het totaalcijfer.

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.
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Exercise 0.1 (Green’s first identity by means of Gauss’ Divergence Theorem). Consider B2 =
{x ∈ R2 | ‖x‖ < 1 } and g : R2 → R given by g(x) = x2

1 − x2
2.

(i) Prove ∫
B2

‖ grad g(x)‖2 dx = 2π.

(ii) Recall that ∂g
∂ν = 〈 grad g, ν 〉, the derivative in the direction of the outer normal ν to ∂B2, and

compute ∫
∂B2

(
g

∂g

∂ν

)
(y) d1y.

Hint: Use 2(cos2 α− sin2 α)2 = 2 cos2 2α = 1 + cos 4α.

The equality of the two integrals above is no accident, as we will presently show. To this end, suppose
h : R2 → R to be an arbitrary C2 function. Note that h gradh : R2 → R2 is a C1 vector field and
recall the identity div grad = ∆.

(iii) Prove div(h gradh) = ‖ gradh‖2 + h ∆h.

(iv) Suppose Ω ⊂ R2 satisfies the conditions of Gauss’ Divergence Theorem. Apply this theorem to
verify

(?)
∫

Ω
(h ∆h)(x) dx +

∫
Ω
‖ gradh(x)‖2 dx =

∫
∂Ω

(
h

∂h

∂ν

)
(y) d1y.

(v) Derive (?) in part (iv) directly from Green’s first identity.

(vi) Show that the equality of the integrals in parts (i) and (ii) follows from (?) in part (iv).

Exercise 0.2 (Area of surface in C2). As usual, we identify z = y1 + iy2 ∈ C with y = (y1, y2) ∈
R2. In particular, an open set D ⊂ C is identified with the corresponding D ⊂ R2 and a complex-
differentiable function f : D → C with the vector field f = (f1, f2) : D → R2. Thus, we will study
graph(f) ⊂ C2 in the form of the following set:

V = { (y, f(y)) ∈ R4 | y ∈ D ⊂ R2 } = im(φ) with

φ : D → R4 given by φ(y) = (y1, y2, f1(y), f2(y)).

It is obvious that V is a C∞ submanifold in R4 of dimension 2 and that φ is a C∞ embedding.

(i) Compute the Euclidean 2-dimensional density ωφ on V determined by φ. Next, use the Cauchy–
Riemann equations D1f1 = D2f2 and D1f2 = −D2f1 to show the following identity of func-
tions on R2:

ωφ = 1 + ‖ grad f1‖2 = 1 + ‖ grad f2‖2.

Suppose D to be a bounded open Jordan measurable set and deduce

vol2(V ) = area(D) +
∫

D
‖ grad f1(y)‖2 dy.

(ii) Suppose D = { z ∈ C | |z| < 1 } and f(z) = z2. Apply the preceding result as well as part (i)
in Exercise 0.2 in order to establish that in this case we have vol2(V ) = 3π.
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Exercise 0.3 (Computation of ζ(2) by successive integration). Define the open set J =
]
0,
√

2
[
⊂

R and the function m : J → R by m(y1) = min(y1,
√

2− y1).

(i) Sketch the graph of m. Verify that the open subset ♦ of R2 is a square of area 1 if we set

♦ = { y ∈ R2 | y1 ∈ J, −m(y1) < y2 < m(y1) }.

(ii) Define

f : ♦ → R by f(y) =
1

2− y2
1 + y2

2

.

Compute by successive integration ∫
♦

f(y) dy =
π2

12
.

At (
√

2, 0), which belongs to the closure in R2 of ♦, the integrand f is unbounded. Yet, without
proof one may take the convergence of the integral for granted.
Hint: Write the integral the sum of two integrals, one involving

]
0, 1

2

√
2

[
and one

]
1
2

√
2,
√

2
[
,

which can be computed to be π2

36 and π2

18 , respectively. In doing so, use that f(y) = f(y1,−y2).
Furthermore, without proof one may use the following identities, which easily can be verified by
differentiation: ∫

f(y1, y2) dy2 = : g(y1, y2) :=
1√

2− y2
1

arctan
( y2√

2− y2
1

)
,

∫
g(y1, y1) dy1 =

1
2

arctan2
( y1√

2− y2
1

)
,

∫
g(y1,

√
2− y1) dy1 = − arctan2

(√√
2− y1√
2 + y1

)
.

Introduce the open set I = ] 0, 1 [ ⊂ R, and furthermore the counterclockwise rotation of R2 about the
origin by the angle π

4 by

Ψ ∈ End(R2) with Ψ =
1√
2

( 1 −1
1 1

)
, set � = I2 ⊂ R2.

(iii) Show that Ψ : ♦ → � is a C∞ diffeomorphism and using this fact deduce from part (ii)∫
�

1
1− x1x2

dx =
π2

6
.

(iv) Conclude from part (iii) ∫
I

log(1− x)
x

dx = −π2

6
.

Give arguments that the integrand is a bounded continuous function on I near 0.

(v) Compute
∫

� (x1x2)k−1 dx, for k ∈ N. Assuming without proof that in this particular case
summation of an infinite series and integration may be interchanged, use part (iii) (or part (iv)) to
show Euler’s celebrated identity

ζ(2) :=
∑
k∈N

1
k2

=
π2

6
.
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Solution of Exercise 0.1

(i) We have grad g(x) = 2(x1,−x2) and so ‖ grad g(x)‖2 = 4‖x‖2. Introducing polar coordinates
(r, α) in R2 \ { (x1, 0) ∈ R2 | x1 ≤ 0 }, which leads to a C1 change of coordinates, we find∫

B2

‖ grad g(x)‖2 dx =
∫ π

−π

∫ 1

0
4r3 dr dα = 2π[r4]10 = 2π.

(ii) ∂B2 = S1, which implies ν(y) = y. Therefore(
g

∂g

∂ν

)
(y) = g(y)〈 2(y1,−y2), (y1, y2) 〉 = 2g(y)2.

Note S1 = im(φ) with φ(α) = (cos α, sin α). Hence ωφ(α) = ‖(− sin α, cos α)‖ = 1 and so∫
∂B2

(
g

∂g

∂ν

)
(y) d1y =

∫ π

−π
2(cos2 α− sin2 α)2 dα =

∫ π

−π
(1 + cos 4α) dα = 2π.

(iii) We have

div(g grad g) =
∑

1≤j≤2

Dj(g Djg) =
∑

1≤j≤2

((Djg)2 + g D2
j g) = ‖ grad g‖2 + g ∆g.

(iv) The assertion follows from application of Gauss’ Divergence Theorem 7.8.5 to the vector field
g grad g; indeed,∫

Ω
div(g grad g)(x) dx =

∫
∂Ω
〈 g(y) grad g(y), ν(y) 〉 d1y =

∫
∂Ω

g(y) 〈 grad g, ν 〉(y) d1y

=
∫

∂Ω

(
g

∂g

∂ν

)
(y) d1y.

(v) Set f = g in Green’s first identity∫
Ω
(g ∆f)(x) dx =

∫
∂Ω

(
g

∂f

∂ν

)
(y) dn−1y −

∫
Ω
〈 grad f, grad g 〉(x) dx.

(vi) This follows from ∆g = 2− 2 = 0.

Solution of Exercise 0.2

(i) According to Lemma 8.3.10.(i) and (ii) the Cauchy–Riemann equations apply to the real and
imaginary parts f1 and f2 of the holomorphic function f ; consequently, we have the following
equality of mappings R2 → Mat(2,R):

(Dφ)t Dφ =
(

1 0 D1f1 D1f2

0 1 D2f1 D2f2

) 
1 0
0 1

D1f1 D2f1

D1f2 D2f2



=
(

1 + (D1f1)2 + (D1f2)2 D1f1 D2f1 + D1f2 D2f2

D1f1 D2f1 + D1f2 D2f2 1 + (D2f1)2 + (D2f2)2

)

=
(

1 + ‖ grad f1‖2 0
0 1 + ‖ grad f1‖2

)
.
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Indeed, the coefficient of index (2, 1) equals D1f1 D2f1 − D2f1 D1f1 = 0. In view of Defini-
tion 7.3.1. – Theorem we obtain

ωφ =
√

det ((Dφ)t Dφ) =
√

(1 + ‖ grad f1‖2)2 = 1 + ‖ grad f1‖2.

The last assertion now follows, because

vol2(V ) =
∫

V
d2x =

∫
D

ωφ(y) dy =
∫

D
(1 + ‖ grad f1(y)‖2) dy.

(ii) f1(y) = Re(y1+iy2)2 = y2
1−y2

2 = g(y) with g as in Exercise 0.2. The assertion is a consequence
from area(D) = π and part (i) of that exercise.

Solution of Exercise 0.3

(i) graph(m) is given by

1
����������!!!!2

�!!!!2

1
����������!!!!2

This is an isosceles rectangular triangle of hypothenuse
√

2, hence its area equals 1
2 .

(ii) Note J = 1
2J ∪ (1

2

√
2 + 1

2J) while the two subintervals have only one point in common. On
1
2J and 1

2

√
2 + 1

2J one has m(y1) = y1 and m(y1) =
√

2 − y1, respectively. Furthermore
f(y) = f(y1,−y2). Therefore, using a generalization of Corollary 6.4.3 on interchanging the
order of integration and the antiderivatives as given in the hint, one obtains∫

♦
f(y) dy = 2

∫ 1
2

√
2

0

∫ y1

0
f(y) dy2 dy1 + 2

∫ √
2

1
2

√
2

∫ √
2−y1

0
f(y) dy2 dy1

= 2
∫ 1

2

√
2

0
g(y1, y1) dy1 + 2

∫ √
2

1
2

√
2
g(y1,

√
2− y1) dy1

= arctan2
(√

1
2√
3
2

)
+ 2 arctan2

( 1√
3

)
=

π2

36
+

π2

18
=

π2

12
,

because tan(π
6 ) = 1√

3
.

(iii) The rotations Ψ and Ψ−1 are bijective and C∞; hence, Ψ is a C∞ diffeomorphism. From the
description of Ψ as a specific rotation one gets Ψ(♦) = �. Thus, Ψ : ♦ → � is a C∞

diffeomorphism. Observe that, for y ∈ ♦ and x = Ψ(y) ∈ �,

1
1− x1x2

=
1

1− 1
2(y1 − y2)(y1 + y2)

= 2f(y) and |det DΨ(y)| = 1.

Application of the Change of Variables Theorem 6.6.1 now leads to the desired equality.
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(iv) Note that ∫
I

1
1− x1x2

dx2 =
[
− log(1− x1x2)

x1

]1

0
= − log(1− x1)

x1
.

Since � = I× I , one obtains the desired formula by means of Corollary 6.4.3 once more. Taylor
series expansion of the integrand about 0 shows that it equals −1 +O(x), for x ↓ 0.

(v) Obviously ∫
�

xk−1
1 xk−1

2 dx =
( ∫

I
xk−1 dx

)2
=

1
k2

.

Summation of the geometric series leads to∑
k∈N

(x1x2)k−1 =
1

1− x1x2
.

Integrating the equality over � and interchanging summation of an infinite series and integration
one finds, on the basis of part (iii)

∑
k∈N

1
k2

=
∑
k∈N

∫
�
(x1x2)k−1 dx =

∫
�

1
1− x1x2

dx =
π2

6
.

Background. Compare this exercise with Exercise 6.39. Note that the definition of the integral in part
(ii) needs some care, as the integrand f becomes infinite at the corner (

√
2, 0) of the closure of ♦. Since

f is continuous and positive on the open set ♦, in order to prove convergence of the integral it suffices
to show the existence of an increasing sequence of compact Jordan measurable sets Kk ⊂ ♦ such that
∪k∈NKk = ♦ and that the

∫
Kk

f(y) dy exist and converge as k → ∞, see Theorem 6.10.6. One may
do this, by choosing the subsets Kk to be the closures of the contracted squares k−1

k ♦.
Next, the antiderivatives in part (ii) may be computed as follows. For the first one, write

f(y) =
1√

2− y2
1

1

1 +
( y2√

2−y2
1

)2

d

dy2

y2√
2− y2

1

and set u = u(y2) =
y2√

2− y2
1

;

further, use
∫

1
1+u2 du = arctanu. For the second antiderivative, apply the change of variables

v = v(y1) =
y1√

2− y2
1

, so y1 =
√

2
v√

1 + v2
,

√
2− y2

1 =
√

2

(1 + v2)
1
2

,
dy1

dv
=

√
2

(1 + v2)
3
2

.

Thus, ∫
g(y1, y1) dy1 =

∫
arctan v

1 + v2
dv =

1
2

arctan2 v.

For the third antiderivative, apply the change of variables

w = w(y1) =
√

2− y1√
2− y2

1

, so y1 =
√

2
1− w2

1 + w2
,

√
2− y2

1 =
2
√

2w

1 + w2
,

dy1

dv
= − 4

√
2w

(1 + w2)2
.

Thus, ∫
g(y1, y1) dy1 = −2

∫
arctanw

1 + w2
dv = − arctan2 w.
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