DIT TENTAMEN IS IN ELEKTRONISCHE VORM BESCHIKBAAR GEMAAKT DOOR DE 7B’C VAN A-ESKWADRAAT.
A—-ESKWADRAAT KAN NIET AANSPRAKELIJK WORDEN GESTELD VOOR DE GEVOLGEN VAN EVENTUELE FOUTEN
IN DIT TENTAMEN.
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o Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzij-
den.

o De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van
elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten
daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien
het u niet lukt een bepaald onderdeel te maken en ga gewoon door.

e Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden ge-

bruikt.

o Het eerste vraagstuk telt voor 60 % van de uitslag en het tweede voor 40 %.



Exercise 0.1 (Family of cubic curves). Define the monic cubic polynomial function
p:R—R by p(x) = 2% -3z +2.

(i) Prove that the extrema of p are a local maximum of value 4 occurring at —1 and a local minimum

0 at 1. Determine the zeros of p and decompose p into a product of linear factors.

/

Next introduce the cubic polynomial function

g(x) = p(r1) — 55% -3

and the set V={xcR?|g(z)=0}.

g:R* =R by
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(i) Show that V is a C'* submanifold in R? of dimension 2 by representing it as the graph of a C*>

function.
(iii) Verify again the claim about V' as in part (ii), but now by considering Dg(x), for all z € V.
Further, prove that (—1,0,4) and (1,0, 0) are the only points of V" at which the tangent plane of

V is given by the linear subspace R? x {0} of R3.



For every c € R, define the function

ge:R* =R by  ge(r1,22) = g(z1,22,¢)  andtheset V.= {xeR?|g(r) =0}

(iv) Forevery c € R\ {0,4}, demonstrate that V. is a C* submanifold in R? of dimension 1. Prove
that Vj is a C* submanifold in R? of dimension 1 in all of its points with the possible exception
of (1,0). Furthermore, using part (i) show that V} is the disjoint union of a point (which?) and a
C* submanifold in R? of dimension 1.

(v) Set I = [—2,00[ C R and prove by means of part (i) that Vy C I x R. Next, use this fact to
write Vj as the union of the graphs G and G'_ of two distinct functions defined on [ that are C*°
on the interior of I. Furthermore, derive that (1,0) € Vj is a point where G and G_ intersect
and that % is the smallest angle between the tangent lines at (1,0) of G, and G _, respectively.

(vi) From the previous part it follows that every x € V) satisfies 1 > —2; in this case, therefore, one
may write x1 = t2 — 2 with t € R.. Deduce V) = im ¢, where

¢:R—R? isgivenby  o¢(t) = (t? — 2,3 — 3¢).
Verify that ¢ is an embedding on R\ {#+/3}.

Finally, suppose that p : R — R is an arbitrary monic cubic polynomial with real coefficients and
consider C = {z € R? | p(z1) = 23 }.

(vii) Show that C possesses a singular point only if p has a root at least of multiplicity two. Describe
the geometry of C' if p has a root of multiplicity three.

Background. Families of curves in R? of the type studied above occur in number theory and in the
theory of differential equations.



Exercise 0.2 (Primal and dual problem in the sense of optimization theory). Suppose C' € End(RP)
to be symmetric and positive definite; that is, (Cy,y) = (y,Cy) and (y,Cy) > 0 forall y € RP,
with equality only if y = 0. Furthermore, let n < p and suppose A € Lin(R", RP) to be injective.

(i) Prove that C' € Aut(RP) and that A’CA € End(R") is symmetric and positive definite, and
therefore satisfies A'!CA € Aut(R"). (Recall that A® € Lin(R?, R") is defined by ( Aly,z) =
(y,Az ), forally € R” and z € R".)

Let 0 # a € R" be fixed and define the quadratic function
1
P:R"—R by P(w):§<AtCA:U,x>—(a,x>.

(ii) For z € R™, show by means of part (i) that DP(x) = 0 if and only if x satisfies the linear
equation A'‘C Az = a and that such an z is unique. Conclude that P attains the value p :=
—1(a, (A'CA)~1a) at its only critical point.

In the sequel it may be used without proof that min,crn P(x) = p. (This fact can be proved using
compactness and consideration of the asymptotic behavior of P(x) as ||z| — o0.)
Now we come to the main issue of the exercise, namely, the study of the quadratic function

1
Q:RP—-R given by Qly) = 5( Cly,y), under the constraint Aly = a.

(iii) Demonstrate that, forally € V := {y € R? | Aly = a } and 2 € R", we have the following
identity, in which an uncoupled expression occurs at the left-hand side,

1 _ _
Q) + Pla) = L (C(C™y — Ax), €'y — Ax).
Deduce, for y € V and z € R", that we have Q(y) > —P(z), with equality if and only if
y = C'Azx. Using part (ii), show, forall y € V,

> —p = — 3 — _ .
Qy) > —p max P(x), and conclude Iynel‘r/lQ(y) max P(x)

In other words, the constrained minimum of () equals the unconstrained maximum of —P. As an
example of a different approach, we now study the preceding problem by introducing the Lagrange
function

L:RPxR"—=R  with Ly, z) = Q(y) — {(z, (A'y — a)).

(iv) Using L, determine the points y € V' where the extrema of ()|} are attained and derive the same
results as in part (iii).

Background. The result above is one of the simplest cases of a duality that plays an important role in
optimization theory. In this manner, the primal problem of minimizing () under constraints is replaced
by the dual problem of maximizing P.



Solution of Exercise 0.1

®

(i)

(iii)

(iv)

)

(vi)

p'(x) = 3(2? — 1) = 0 implies # = +1; with corresponding values p(—1) = 4 and p”(—1) =
—6, hence a local maximum; and p(1) = 0 and p”(1) = 6, hence a local minimum. Since
lim, 100 p(z) = +o00, the extrema are not absolute. In view of p(1) = p/(1) = 0, one may
write p(z) = (z — 1)?(x — a) = 2 + --- — a (see Application 3.6.A), which implies @ = —2;
hence the factorization is p(x) = (z — 1)%(z + 2).

g(z) = 0 implies z3 = p(z1) — x3. This leads to V' = { (z1, 72, p(z1) — 23) € R? | (w1, 22) €
R? }, displaying V as the graph of a C* function on R2.

Dg(x) = (p'(x1), —2x2, —1), and this element in Mat(1 x 3, R) is of rank 1, for all z € R3; the-
refore g is submersive on all of R3. The assertion about V' now follows from the Submersion The-
orem 4.5.2. Furthermore, grad g(z) is perpendicular to 7,,V, for any x € V (see Example 5.3.5);
hence T,V = R? x {0} if and only if p/(z1) = 0, zo = 0 and g(x) = 0. But this implies
x1 = +1, 29 = 0 and 3 = p(£1).

According to the Submersion Theorem 4.5.2, the set V. is a a C° submanifold in R? of dimen-
sion 1in z € V. if Dg.(z) = (p/(x1), —2x2) # (0,0) and ¢ = p(z1) — x3. That is, V. possibly
does not possess the desired properties at x if

x1 = +1, z9 =0 and ce{p(£l)} ={0,4}.

If ¢ = 0, and ¢ = 4, only the point (1,0) € V{, and (—1,0) € Vj, respectively, satisfies all these
conditions. Actually, the point (—1,0) is an isolated point of V}. Indeed, on the basis of part (i)
one finds for x € Vj sufficiently close to (—1,0) that 4 = p(—1) > p(x1) = 23 + 4. But this
implies 2 = 0 and so 1 = —1.

For x € Vj one has 0 < x2 = p(x1), but then part (i) implies z;1 > —2. Under the latter

assumption, the condition 23 = p(z1) = (v1 — 1)®(z1 + 2) on x is equivalent to

xo = £(x1 — D)V +2 =: fo(xy),

where fi : I — R is a C'*° function on the interior of /. Now set G1 = graph fi. Since
f+(1) =0, one sees (1,0) € (). G+, while fy is C near 1. Furthermore,

Dfi(z1)=x(Vx1+2+ (x1—1)---), in particular graph Df4(1) = R(1,£V/3).

Noting that the norms of the two preceding generators of the tangent spaces of G, and G_ at
(1,0) are equal to 2 and writing « for the angle between these, one gets

1 1, - 1—- 1 2
cos o = ((1,v3).(1,-V3)) = 3:—77 that is a="T

(VAL V3~ 22 2 3
It follows that the smallest angle between the tangent lines equals m — %’T = 3.

Writing 1 = t?> — 2 for € V{, one finds on the basis of part (i)
23 = p(z1) = (w1 — 1)*(21 +2) = (> = 3)2 % = (¢* — 31)2.

This implies Vj) C im ¢, whereas the reverse implication is a straightforward calculation. D¢(t) =
(2t,3(t% — 1)) is of rank 1, for all ¢t € R; hence ¢ is an immersion on R. Further, ¢(t) = ¢(t'),
for t and t' € R, leads to t = ¢/, hence t(t> — 3) = 0; therefore t = +v/3 and t/ = F/3. If
t # +v/3 and x = ¢(t), then x1 — 1 # 0, which implies that ¢(t) = z 7127 = tdefines a
continuous mapping. This demonstrates that ¢ is an embedding on R \ {£+/3}.



(vii)

If € C is a singular point of C, then p(x1) = 22 and (p/ (1), —2x2) = (0, 0) imply x5 = 0 and
p(z1) = p/(x1) = 0; in other words, p must possess a root of multiplicity at least two. Suppose
p(z1) = (z1 — ¢)3, for some ¢ € R, then the points of C satisfy the equation (v1 — ¢)? = z3,

which is an ordinary cusp as in Example 5.3.8.

Solution of Exercise 0.2

®

(i)

(iii)

(iv)

Suppose that C'y = 0, then (y, Cy) = 0, hence y = 0. Accordingly, C' is injective and thus
C € Aut(RP). Next, (AICA)! = A'C'AY = A'C A, which proves the symmetry. Further,
assume r € R" satisfies A’C' Az = 0. Then, in view of C being positive definite and A injective,

(2, A'CAz) = (Az, CAz) =0 = Az=0 = x=0.
Finally, apply the first argument to A'C' A.

The first assertion on D P(z) follows from Corollary 2.4.3.(ii), while the uniqueness of x is a
consequence of A'C A € Aut(R™). Furthermore,
1
P((A'CA)z) = Sl (A'CcA)7ta) — (a,(A'CA)ta).

For all y € V and x € R" one obtains, using A’y = a and the positive definiteness of C,

Qy) + P(a)
= SOy + G ACATT) ~ (a,0)

1 _ _ 1

= J(O(CT = A2,y — Av) + Sy, Aw) + 3 (CAz, CTly) — (y, Au)
1

= 5<C(c—1y — Az), Cly — Az) > 0.

Once more on the basis of C' being positive definite, one has equality if and only if C~1y — Az =
0, in other words, y = C'Ax. In turn, this implies Q(y) > —P(z), forally € V and z € R".
In particular, this is the case if z° € R™ is the unique element satisfying A‘C Az® = a (see part
(i1)); this implies, for all y € V,

Q) > —P(") = max ~P(z) = — min P(x) = —p.

Now consider ¢y = CAz® € RP. Then Aly® = A'C Az® = a, thatis, y° € V; and the preceding
arguments imply Q(y°) = —P(2%) = —p. This proves minyey Q(y) = —p.

Applying the method of Lagrange multipliers, one obtains that extrema for (|, occur at points
y € V satisfying
DyL(y, x) = Cily —Arz=0 — Y= CAx and a = Aty = AtCAx

However, for such y and z,

1 1 1
Qly) = 5(0_1CA35,CA95):§<Ax,C’Ax):§(AtCA:L‘,$>

= —%(AtCAa:,:w +(a,r) = —P(z).

6



C~! being positive definite implies that () attains a minimum on V'; indeed, the graph of the
restriction of ) to V' is the intersection of an elliptic paraboloid and an affine submanifold (if
necessary, use that continuity of the function () implies that it attains extrema on compact subsets
of V). Therefore minyey Q(y) = —P(x) where z = (A'CA)~'a € R". Finally, use part (ii) to
obtain the desired equality.

Background. The method of Lagrange multipliers enables one to obtain the dual quadratic form P,
given the primal form () together with its constraint, by explicitly computing the minimal value of Q.



