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Exercise 1. (30 pt) In this exercise, we will compute the total derivative of the
inversion mapping G : R™ \ {0} — R"™ defined by

Gz) = ”;Hx 1)

where ||z|| is the standard norm in R™, i.e. ||z|? = (z,z) = 2 2.

(a) (& pt) Describe the action of the mapping (1) geometrically.

G inverts the distance of points to the origin. It preserves all radial rays and interchanges the

sphere of radius r centred at the origin with that of radius %

(b) (10 pt) Let U C R™ be open and let f : U — R and G : U — R" be two
differentiable mappings. Define fG : U — R" via (fG)(z) = f(z)G(z), x € U.
Prove that fG is differentiable and

D(fG)(x) = f(x)DG(x) + G(x)Df(z), = €U (2)

This can be done in several ways:

1. Let x € U, then by Hadamard’s lemma there exist continuous functions ¢: U — Lin(R",R)
and I': U — Lin(R"™,R™) such that

fy) = f@) +o(y)(y — ) and Gly) = Gx) +T(Y)(y — =)
for all y € U. Moreover, ¢(z) = Df(z) and I'(x) = DG(x).
Consequently, we find that
(f&) () = fy) (G(z) + T(y)(y — x))

= f(2) G(x) + ¢(y)(y — =) G(z) + f(y) T(¥)(y — =)

= fG(x) + H(y)(y — x),
where H: U — Lin(R",R") is the function given by

H(z) = f(z)T'(y) + G(z) ().

Continuity of H follows by application of the sum and product rules for continuous func-
tions. By applying Hadamard’s lemma again, we conclude that fG is differentiable at =z,
with total derivative

D(fG)(x) = H(z) = f(z)['(z) + G(z)¢(z) = f(x) DG(x) + G(x) D f ().



2. Because f and G are differentiable by assumption, one can write
flx+h)= f(z)+ Df(z)h+ Ry(x + h)

and
G(x + h) = G(z) + DG(z)h + Ra(z + h).

Here Ry: U — R and Rg: U — R" satisfy

lim Ry(w+h) =0 and lim M

=0.
h=o Al h=o [|A]|

By working out the product of these two expressions, one obtains

(fG) (@ +h) = f(2)G(x) + (f(2)DG(x)h + Df(x)h G(x) ) + Rya(x + h),
where the final term reads

Ryg(x +h) = Df(x)h DG(z)h + Rs(x + h)G(z) + f(x + h) Ra(xz + h).
Since h +— G(z) and h — f(x + h) are continuous functions, we obviously have

lim Ry(x + h) Ra(z+ h)

=0.
h=0 ||| i

G(z)=0 and }llimo flx+h)

For the first term, we can make the estimate

[Df @R[ IDG ()R] _ [|IDf (@) |IDG ()] [|h]?
17l - (7]

= [IDF @) IDG @) 7],

so this also vanishes in the limit for h — 0. We conclude that

Hence, fG is differentiable and its total derivative is given by

D(fG)(z)h = f(x)DG(z)h + Df(z)h G(x)
= (f(x)DG(x) + G(x)Df (x))h.

3. One can use the fact that an R"-valued function is differentiable if and only if all of its
components are.

For 1 < i < n, the i-th component of fG is given by (fG)i(xz) = f(x)G:i(z) and is a product
of scalar functions. Both f and G; are differentiable by assumption, so one may conclude
from the product rule that their product is as well, with total derivative

D(fG)i(z) = Gi(z) Df(x) + f(x) DGi(x).

Since each of its components are differentiable, the original function fG is as well and its
derivative is given by
D(fG)i(x)h Gi(z) Df(x)h + f(z) DG1(z)h
D(fG)(w)h = : - :

D(Ga()h)  \Gu(w) DS )+ f(z) DG (w)h.
More concisely, we read off that D(fG)(z) = G(z)Df(z) + f(z) DG(z).



(c) (5 pt) Using (2) with f(x) = ||z||?, compute the total derivative DG(x) of the
mapping (1) for x € U, where U = R™ \ {0}.

In our specific case, we have that f(z) G(z) = z for all z € R" \ {0}, so fG = id. From this, it
follows that
D(fG)=GDf + f DG = Did = id.

We know the derivative of f: x +— ||z||? to be Df(x)h = 2 (z,h) = 22"h, so the above identity
tells us that

DG(x) = f(x) " (id - G(z) - Df (x))
R S S S
‘W(ld’W'“)‘ alE 4@

where for z € R\ {0}, A(z) denotes the matrix

zx’
A =] -2 —.
@) Bk

(d) (10 pt) Show that for = € U holds DG(z) = ||x||"2A(x), where A(z) is represented
by an orthogonal matrix, i.e. AT(z)A(z) = 1.

We recognise A(x) as the matrix representing a reflection in the plane perpendicular to z. We
will verify that this is an orthogonal transformation.

Because A"(z) = A(xz), we see that

AT(2)A(z) = (172 me)Q _2_y xa’ +4xme:vT
[z (=] llzll*

Because 2"z = ||z||?, the last two terms cancel out and we may conclude that A™(2)A(z) = I* = 1.
Exercise 2 (80 pt). Let a,b,c > 0 and let M be the ellipsoid in R? defined as

2 2 2
X X X

M = R3:2L 422,73 1%,
{:L‘E St et o

(a) (10 pt) Find the tangent space of M at x € M.

Introduce g : R®* — R by

2 2 2
g(z) = % T3
a2 b2 2’

so that M = {x € R®: g(z) = 1}. A simple computation shows that the derivative of g at x € R?
reads
2 T 2 ) 2 X3
Dg(x) = (? 2 =2 ) (3)
which is non-zero for all x # 0. Hence g is a submersion at every point x € M and its geometric
tangent space at x is given by

T.M = {y € R® | Dg(z)(y — z) = 0} = {y € R® | Dg(x)y = 2}.

2 2 2x:
For this have used that Dg(z)z = %xl + %1’2 + %1‘3 =2g(z)=2.
a c



(b) (20 pt) Compute the distance from the origin to the geometric tangent plane to
M at an arbitrary point x € M.

The distance from the origin to the tangent plane at * € M can be found through either a
geometric argument or by applying the method of Lagrange multipliers.

1. The distance from the origin to the plane will be equal to the length of the component of
x € Ty M orthogonal to it. Since we know that grad g(z) = [Dg(x)]" is orthogonal to the
tangent space T, M, this length will be given by

d0.Tar) — (TEd9@) _ Dy@a

[gradg(x)]| — [[Dg(x)]l”

We have already computed the numerator Dg(z)x = 2, and the denominator can be read
off from equation (3). We thus obtain

1
5 2 2 2\ —3
dmnm:<%+%+%>.

2. One may also arrive at this answer through the method of Lagrange multipliers. The dis-
tance d(0, T, M) is then obtained by minimising the function f: z — ||z||? on the geometric
tangent plane T, M. Since the plane T.M C is a closed subset of R3, f assumes a mini-
mum on it at some point yo € T M and the distance from the origin to the plane will be
the square root of this minimum. (NB: The intersection T, M N B(0, R) is compact and
non-empty for an appropriately chosen R > 0. The norm assumes a minimum on it, which
is in fact a global minimum.)

The point yo € Tp M will necessarily be a critical point for f, which means that grad flyo) =
2yo is orthogonal to T M, hence parallel to gradg(xz). Let A € R be such that yo =
A grad g(x), then we see that (since yo € T» M)

Dg(z)yo = (grad g(z), A grad g(z)) = A | grad g(z)[* = 2.

We derive that A = 2| grad g(z)||~2 and that therefore

=

2 2 oz 22\~
— Nllgradg(@)] = ———— = (D 4 22, 5
looll = W llgrad (o)l = 2 = (G 4+ 52+ &

This confirms our earlier conclusion.

3. The critical point described in part 2 also corresponds to a critical point for the Lagrange
function

L:R*xR—R, (:A) = f(y) = Ah(y),
where f(y) = |ly[|* and A(y) = Dg(x)y — 2.
Since Df(y) = 2y" and Dh(y) = Dg(z), the equation DL(y, \) = 0 becomes
DL(y) = (Df(y) = A Dh(y), h(y)) = (2y" = A Dg(), Dg(x)y — 2) = 0.

Solving this system of equations essentially comes down to following the steps from option
2.



Exercise 3. (40 pt) Here, we will study a representation of the Mdbius Strip in R3.
(a) (5 pt) Let D={(0,t) eR?: —m <O <m,—1<t<1}andlet ®:D — R be

defined by
<2 + t cos (g)) cos
0 .
®(0,t) = <2 + tcos <2)> sin 0
tsin Q
2

Prove that ® is an immersion at any point in D.

The function ® is clearly C'*°, and we can explicitly compute its derivative

D®(0,t) = (BpsB(0,t) 0:B(6,1))

—2tsin(36) cosf — (2 + tcos(16))sinf  cos(16) cos b
= | —3tsin(30) sin19 + (21—|— tcos(30)) cosf cos(é@} sin 0
stcos(56) sin(50)
There are at least three ways to verify that D®(0,t) is injective for all (0,t) € D, so that ® is an

immersion.

1. One can compute the determinant of the upper 2 x 2 block of D®(0,t). This determinant

equals
—(2+ tcos(36)) cos(36).
This is non-zero for all (6,t) € D, meaning that D®(6,t) has rank 2 and that ® is an
immersion.
2. One can also decompose
cosf —sinf O —itsin(360) cos(36)
D®(0,t) = [ sinf  cosf O 2+ tcos(30) 0
0 0 1 1tcos(360)  sin(30)

Since 2+t cos(26) > 0 for (6,t) € D, the two columns of the 3 x 2-matrix on the second line
are linearly independent. Because the square matrix that was factored out is invertible, we
conclude that D®(6,t) is injective and that ® is therefore an immersion.

3. Another option is calculating the cross product 9o ®(6,t) x 9:®(0,t). The third component
of this cross product is

—(2+ tcos(36)) cos(%&)(sin2 0 +cos®0) = —(2+ tcos(30)) cos(30).

This is non-zero for all (0,¢) € D, which means that the columns of D®(¢,t) are linearly
independent. We conclude that D®(6,t) has rank 2 and that ® is an immersion.

(b) (10 pt) Show that ® : D — ®(D) is invertible and that the inverse mapping is
continuous. Use this to conclude that V = ®(D) is a C* submanifold in R? of
dimension 2.

For (x,y) € R? of the form (z,y) = p (cos ¢, sin ¢) with p > 0 and ¢ €] — 7, 7|, one can recover
p=+/72+y?and ¢ =2 arctan(pﬁ)‘ We therefore define

p:]RQ\{(O,O)} —]0, oo, and d):RQ\{(x,O) |z <0} =] —m, 7|



by setting
Yy
z,y) = Va2 +y? and x,y) = 2arctan <7>
p(z,y) = Va?+y o(,y) o) o

Since all functions involved are smooth on their domain, p and ¢ are C*° as well.

If (z,y,2) = ®(0,t), then we see that 6 = ¢(z,y) and 2 + tcos(26) = p(z,y), from which ¢ can
also be obtained since cos(36) # 0. This leads us to conclude that the map ¥: R*\ {(z,0,z2) €
R? | 2 < 0} —] — 7, 7[xR such that

o(,y)
\11(1'7:%2:) = ( p(z,y)—2
cos(Lé(@,9))

is a left-inverse of @, i.e. Yo ® =1id: D — D. We deduce that ® is injective and that its inverse
is the restriction ¥|g(py: ®(D) — D.

Since we have described it as a composition of continuous functions, ¥ is also continuous, as is
the restriction ¥|g(py: ®(D) — D. We conclude that ® is a C°° embedding and that its image
®(D) is therefore a 2-dimensional C> submanifold of R?.

(5 pt) Prove that any point = € V satisfies g(z) = 0, where g : R? — R is defined
by
g(x) = 4wy + Awy23 — wo(a + o5 + 23) + 2w3(f + 23). (4)

Notice that each term in g has factor (2 4 ¢ cos(36)). This implies

(24 tcos(36)) [4sin@ + 4t cosOsin(16) — sin 6 (4 + 4t cos(30) + t°)
+ 2tsin(36) (2 + tcos(36))]

(2+ tcos(30)) [4t (cosfsin(36) — sinf cos(36))
— t*sin6 + 4t sin($0) + 2t° sin($0) cos(50)]

(2+ tcos(30)) [—4tsin(36) — t*sin 6 + 4t sin(36) + t*sin 6] = o,

g

since
2sin(36) cos(16) = sin 6
and
cos Osin($0) — sinf cos(30) = sin(30 — 0) = —sin(30).

We conclude that g(®(6,t)) = 0 for all (0,¢) € D.

(10 pt) The Mébius strip is the closure M = V of V in R3. Verify that the
circle S = {(z1,72,73) € R3 : 22 + 22 = 4 and 23 = 0} belongs to M. Give a
parametrization of S by 6 €]—m, 7]. Prove that g introduced by (4) is a submersion
at any point z € S except for z = (—2,0,0).

One can parametrise the circle S by f:] — 7, 7] — R* 60 — (2cos,2sin6,0). Note that f(] —
m,7[) € ®(D) because f(8) = ®(6,0) for 6 €] — m, 7[.

The fact that f is continuous then tells us that

HQ=ma) = f(T=mal) S TT—mr) SV =M,

where | — m, w[ =] — 7, 7] denotes the closure of | — w, 7| in | — 7, 7].



One way to derive this is by writing 7 = limy,— o ar for some sequence (an)nen with a, €]—m, 7|,
so that f(m) = lim,—oc0 f(an) by the continuity of f. From this we conclude that f(7) is a limit
point of f(] —m,#w[) C V and is therefore in the closure M = V.

The gradient of g can easily be computed, and reads

dzs — 221 2 + 421 T3
gradg(z) = | 4 — (21 + 23 4+ 23) — 223 + 4322
4x) — 2w w3 + 2 (23 4 23)

By plugging in z = f(6), we obtain the expression

—8cosfsinf —sin(26)
grad g(f(0) = [ 4—4—8sin?0 | =4 [ cos(20) — 1
8cosf + 8 2 (cosf+1)

The last component is non-zero for all 8 €], 7[, while for # = 7 all components vanish. Thus, g
is a submersion at every point of S except for f(7) = (—2,0,0).

This shows that V' is a submanifold at every point in S NV, corroborating the conclusion from
part (b).

(10 pt) Show that ng = (0,0,1) € R? is orthogonal to the tangent space To0,0)V-
Compute a continuous vector-valued function n :] — 7, 7[— R3 such that n(0) = ng
and for all —m < 6 < m the vector n(f) € R3 is orthogonal to Typ,0)V while
IIn(0)]| = 1. Verify that

lim n(f) = — lim n(0).

O—m 0——m

Here again several approaches are possible.

1. Since we have shown that the function g is a submersion at x = ®(0,0) = f(0) for § €]—7, 7|
and V C g~ '({0}), we also know that the gradient grad g(z) is normal to the tangent space
Ts(0,0)V. Because grad g(f(0)) = (0,0,16), it follows that also no = (0,0,1) is orthogonal
to T@(070)V.

The function n described in the exercise is obtained by normalising the vectors grad g(f(6))
for § €] — m, 7| and setting
_ mnadg(f(6) _ 1 —en(20)
n(f) = = T cos(26) — 1
Trad g7~ 4Teos(30)] \ 5'(oong + 1)

A few trigonometric identities have been applied to obtain the final, simplified expression:
sin?(26) + (cos(260) —1)* + 4 (cos 0 + 1)*
= sin*(26) 4 cos®(260) — 2cos(20) + 1 4+ 4 cos” O + 8cos b + 4
=6 — 2(cos” 0 — sin® B) + 4 cos® O + 8cos
=8+ 8cosf = 16cos>(36).

2

We note that |cos(36)| = cos(36) for —m < 6 < 7, so that the limits limg_+, n(f) can be



obtained by applying ’'Hépital’s rule:

—sin(20)
lim n(d) = lim ————— | cos(20) — 1
pm 0+t 4cos(%9) 2 (cosO+1)
_ Sin(2 9)
= lim %% cos(26) 1
o—xr L 4cos(30) 2 (cosf + 1)
. —2cos(26)
= lim ————— | —2sin(20)
o—+r —2sin(16) —2sin@

This is just the limit of a continuous function, so we read off that

1 1
lim n(f) = | 0 and lim n(@)=— {0
0 0

0—m 0——m

2. A somewhat different approach involves the cross product 9 ® (0, t) x 9, P (6, t) of the partial
derivatives of part (a). Because ® is an immersion, this cross-product is non-vanishing for
every (0,t) € D, and is orthogonal to the tangent space Ty o 1)-

Since at 99®(0,0) = (0,2,0) and 9:®(0,0) = (1,0,0), we have 9p®(0,0) x 9:P(0,0) =
(0,0,—2) and we can again conclude that no = (0,0, 1) is orthogonal to Tg(o,0)V -

Because 9p®(0,0) x 0;®(0,0) and no are pointing in opposite directions, an additional
minus sign needs to be introduced in the definition of n, so that

_ —0p®(0,0) x 0, (6,0)

") = 19,30, 0) x 8,8(0,0)] "

This will lead to the same answer.

(f) (Bonus: 5 pt) Sketch the set M and describe its geometry.

The Mébius strip M is a smooth 2-dimensional connected manifold with boundary in R3. Tt is
similar to a cylinder in the sense that it can be described as the union of a continuous family of
line segments over the circle, but these line segments are gradually twisted as one goes around
the circle. This happens in such a way that if one follows a line segment around the circle once,
its end points are interchanged. (It is a non-trivial fibre bundle.)




The Mobius strip is non-orientable, which can be expressed by saying that it has only ‘one
side’. This was demonstrated in part (e), where a vector normal to the surface was continuously
transported around the loop once and ended up on the ‘other side’.



