Inleiding Topologie, Exam A (April 18, 2012)

Exercise 1. Let \mathcal{B} be the family of subsets of \mathbb{R} consisting of \mathbb{R} and the subsets

$$[n, a) := \{ r \in \mathbb{R} : n \le r < a \} \text{ with } n \in \mathbb{Z}, a \in \mathbb{R}.$$

- 1. Show that \mathcal{B} is not a topology on \mathbb{R} , but it is a topology basis. Denote by \mathcal{T} the associated topology. (1p)
- 2. Is $(\mathbb{R}, \mathcal{T})$ second countable? But Hausdorff? But metrizable? Can it be embedded in \mathbb{R}^{2012} (with the Euclidean topology)? (1p)
- 3. compute the closure, the interior and the boundary of $A = [-\frac{1}{2}, \frac{1}{2}]$ in $(\mathbb{R}, \mathcal{T})$. (1.5p)

Exercise 2. Prove directly that the abstract torus $T_{\rm abs}$ is homeomorphic to $S^1 \times S^1$. More precisely, define an explicit map

$$\tilde{f}:[0,1]\times[0,1]\to\mathbb{R}^4$$

whose image is

$$S^1 \times S^1 = \{(x, y, z, t) \in \mathbb{R}^4 : x^2 + y^2 = z^2 + t^2 = 1\}$$

and which induces a homeomorphism $f: T_{abs} \to \mathbb{S}^1 \times S^1$. Provide all the arguments. (1.5p).

Exercise 3. Let X be the space obtained from the sphere S^2 by gluing the north and the south pole (with the quotient topology). Show that X can be obtained from a square $[0,1] \times [0,1]$ by glueing some of the points on the *boundary* (note: you are not allowed to glue a point in the *interior* of the square to any other point). More precisely:

- 1. Describe the equivalence relation R_0 on S^2 encoding the glueing that defines X. $(\theta.25p)$
- 2. Make a picture of X in \mathbb{R}^3 . $(\theta.25p)$
- 3. Describe an equivalence relation R on $[0,1] \times [0,1]$ encoding a glueing with the required properties. (1p)
- 4. Show that, indeed, X is homeomorphic to $[0,1] \times [0,1]/R$ (provide as many arguments as you can, but do not write down explicit maps- instead, indicate them on the picture). $(\theta.5p)$

Exercise 4. Show that:

- 1. There exist continuous surjective maps $f: S^1 \to S^1$ which are not injective. $(\theta.5p)$
- 2. Any continuous injective map $f: S^1 \to S^1$ is surjective. (1p)

Exercise 5. Show that any continuous map

$$f: (\mathbb{R}, \mathcal{T}_{\mathrm{Eucl}}) \to (\mathbb{R}, \mathcal{T}_l)$$

must be constant (recall that \mathcal{T}_l is the lower limit topology- i.e. the one generated by intervals of type [a,b)). (1.5p)

Note 1: Motivate all your answers. Whenever you use a Theorem or Proposition, please make that clear (e.g. by stating it). Please write clearly (English or Dutch).

Note 2: The final mark is

$$\min\{10, 1+p\},\$$

where p is the number of points you collect from the exercises.