Inleiding Topologie, Exam A (April 17, 2013))

Note 1: The mark for this exam is the minimum between 10 and the number of points that you score (in total, there are 13 points in the game!).

Note 2: please MOTIVATE ALL YOUR ANSWERS (e.g., in Exercise 2, do not just give the example, but also explain/prove why it has the required properties).

\(\frac{1}{2}\) Exercise 1. (1 pt) Let X and Y be two topological spaces. For $A \subset X$, $B \subset Y$, we consider $A \times B$ as a subset of $X \times Y$. Show that:

$$Int(A \times B) = Int(A) \times Int(B)$$

(the interior of $A \times B$ inside $X \times Y$ (with respect to the product topology)= the product of the interior of A in X with the interior of B in Y).

Exercise 2. (1 pt) Give an example of a connected, bounded, open subset of \mathbb{R}^2 which cannot be written as a finite union of balls (here we use the Euclidean metric and topology on \mathbb{R}^2).

open

Exercise 3. Let $X = (-1, \infty)$.

+ (i) (1 pt) Find all the numbers $a,b\in\mathbb{R}$ with the property that

$$n \cdot t = \phi_n(t) = 2^n t + a^n + b$$

defines an action of the group $(\mathbb{Z}, +)$ on X.

 \mathcal{F} (ii) (1 pt) For the a and b that you found, show that the resulting quotient space X/\mathbb{Z} is homeomorphic to S^1 .

+Exercise 4. On $X = \mathbb{Z}$ we consider the family \mathcal{B} of subsets of X consisting of the empty set and the subsets of type

$$N_{a,b} := a + b\mathbb{Z} = \{a + bn : n \in \mathbb{Z}\} \subset \mathbb{Z},$$

with $a, b \in \mathbb{Z}, b > 0$.

(i) $(0.25 \ pts)$ Show that, for $a, a', b, b_1, b_2 \in \mathbb{Z}$ with $b, b_1, b_2 > 0$:

$$N_{a,1}=N_{a,-1}=\mathbb{Z},$$

$$N_{a,b_1b_2} \subset N_{a,b_1} \cap N_{a,b_2}$$

and one has the following equivalences:

$$a' \in N_{a,b} \iff a \in N_{a',b} \iff N_{a,b} = N_{a',b}.$$

- (ii) (0.5 pts) Show that \mathcal{B} is not a topology on X.
- +(iii) (0.5 pts) Show that \mathcal{B} is a topology basis on X. Let \mathcal{T} be the induced topology.
- ψ (v) (1 pt) Compute the interior and the closure of $A := \{-1,1\}$ in (X,\mathcal{T}) .
- \leftarrow (iv) (0.5 pts) Show that (X, \mathcal{T}) is Hausdorff.
 - (vi) (0.25 pts) Show that, for any $b \in \mathbb{Z}$, b > 0, \mathbb{Z} can be written as a union of b nonempty subsets that belong to \mathcal{B} , each two of them being disjoint.
- + (vii) (0.5 pts) Show that any subset of type $N_{a,b}$ is both open and closed in (X, \mathcal{T}) .
- ψ (viii) (1 pt) Show that

$$\mathbb{Z}\setminus\{-1,1\}=\bigcup_{p- ext{prime number}}N_{0,p}$$

and then, using (vii) and (v), deduce that the set of prime numbers is infinite.

Exercise 5. Consider the 3-sphere S^3 viewed as a subspace of \mathbb{C}^2 :

$$S^3 = \{(u, v) : u, v \in \mathbb{C}, |u|^2 + |v|^2 = 1\}.$$

Inside the sphere we consider

$$A:=\{(u,v)\in S^3: |v|=\frac{\sqrt{2}}{2}\}.$$

- \bigstar (i) (1 pt) Show that $S^3 \setminus A$ has two connected components.
- +(ii) (0.5 pts) Show that the two connected components, denoted X_1 and X_2 , satisfy:

$$\overline{X}_1 \cap \overline{X}_2 = \partial(X_1) = \partial(X_2) = A.$$

(where the closures and boundaries are inside the space S^3).

(iii) (1 pt) Consider the unit circle and the closed unit disk

Consider the time circle and
$$S^1 = \{(\alpha, \beta) \in \mathbb{R}^2 : \alpha^2 + \beta^2 = 1\}, \quad D^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

By a solid torus we mean any space homeomorphic to $S^1 \times D^2$. Show that

$$f: S^1 \times D^2 \to \mathbb{R}^3, \ f((\alpha, \beta), (x, y)) = ((2 - x)\alpha, (2 - x)\beta, y)$$

is an embedding and indicate on a picture what the image of f is (... motivating the name "solid torus").

- (iv) $(1 \ pt)$ Show that \overline{X}_i is a solid torus for $i \in \{1, 2\}$.
- (v) (1 pt) Deduce that the 3-sphere can be obtained from two disjoint copies of $S^1 \times D^2$ (i.e. two solid tori) by gluing any point $(z_1, z_2) \in S^1 \times S^1$ in the boundary of the first copy with the point (z_2, z_1) in the boundary of the second.