Inleiding Topologie (Retake, March 12, 2014)

Exercise 1. Let \mathcal{T} be the smallest topology on \mathbb{R} with the property that

$$f: (\mathbb{R}, \mathcal{T}) \longrightarrow (\mathbb{R}, \mathcal{T}_{\text{Eucl}}), \quad f(x) = x^2$$

is continuous.

a. Describe a basis of $(\mathbb{R}, \mathcal{T})$ and show that any $U \in \mathcal{T}$ has the property that

$$-x \in U \quad \forall \ x \in U.$$

- b. Find the closure and the interior of (-1,2) in (\mathbb{R},\mathcal{T}) .
- c. Is $(\mathbb{R}, \mathcal{T})$ Hausdorff? Can you find a sequence with two (distinct) limits?
- d. Is [-1,1] (with the topology induced from \mathcal{T}) compact? But connected?
- e. Is [-1,1) (with the topology induced from \mathcal{T}) compact?
- f. Is $[-3,1) \cup (1,3]$ (with the topology induced from \mathcal{T}) connected?
- g. Does there exist a metric space X and a finite group Γ acting on X such that X/Γ is homeomorphic to $(\mathbb{R}, \mathcal{T})$?

Exercise 2. Let $f:(X,\mathcal{T}_X) \longrightarrow (Y,\mathcal{T}_Y)$ be a continuous function between two <u>Hausdorff</u> topological spaces. Define $f^*\mathcal{T}_Y$ as the smallest topology on X with the property that

$$f:(X,f^*\mathcal{T}_Y)\longrightarrow (Y,\mathcal{T}_Y)$$

is continuous, and define $f_*\mathcal{T}_X$ as the largest topology on Y with the property that

$$f:(X,\mathcal{T}_X)\longrightarrow (Y,f_*\mathcal{T}_X)$$

is continuous. Show that

- a. $f^*\mathcal{T}_Y = \{f^{-1}(V) : V \in \mathcal{T}_Y\}$ and $f_*\mathcal{T}_X = \{V \subset Y : f^{-1}(V) \in \mathcal{T}_X\}.$
- b. If f is a homeomorphism then $f_*\mathcal{T}_X = \mathcal{T}_Y$ and $f^*\mathcal{T}_Y = \mathcal{T}_X$.
- c. If $f_*T_X = T_Y$ and (Y, T_Y) is connected, then f is surjective.
- d. If $f^*\mathcal{T}_Y = \mathcal{T}_X$ then f is injective.
- e. $f^*\mathcal{T}_Y = \mathcal{T}_X$ holds if and only if f is an embedding.

Exercise 3. Assume that X is a sphere S^2 minus n points and Y is a sphere minus m points, where $m, n \ge 0$ are integers. Show that if X is homeomorphic to Y, then n = m.

Exercise 4. Assume that (X, \mathcal{T}_X) is a compact Hausdorff space and A is a closed subset of X. We consider the complement of A in X,

$$Y := X - A = \{x \in X : x \notin A\},\$$

we denote by X/A the space obtained from X by collapsing A to a point and we consider the canonical projection:

$$\pi: X \longrightarrow X/A$$

(recall that X/A is endowed with the topology $\pi_*\mathcal{T}_X$). Show that:

- a. Y is locally compact and Hausdorff.
- b. For any open U in X with the property that $U \cap A = \emptyset$ or $A \subset U$, one has that $\pi(U)$ is open in X/A.
- c. X/A is a compact Hausdorff space.
- d. The one point compactification of Y is homeomorphic to X/A.

Exercise 5. Let $\mathcal{C}(D^2)$ be the algebra of real-valued continuous functions on the unit disk D^2 and let \mathcal{A} be the subset consisting of those $f \in \mathcal{C}(D^2)$ with the property that they are constant on the boundary circle S^1 .

- a. is \mathcal{A} a sub-algebra of $\mathcal{C}(D^2)$?
- b. is \mathcal{A} dense in $\mathcal{C}(D^2)$?
- c. show that the spectrum of \mathcal{A} is homeomorphic to S^2 .

Notes:

- 1. You may give your answers in Dutch or English.
- 2. All the questions a., b. etc are worth 0.5 points. Exercise 3 is worth 1.5 points (note also that the sum of all the points is 11 ...).
- 3. As before, you are allowed to use during the exam the three sheets of A4 papers (= six pages) containing definitions, theorems, etc from the course- that you prepared at home.
- 4. PLEASE MOTIVATE ALL YOUR ANSWERS!!!!!!!!! (give details, explain your reasoning, use pictures whenever appropriate, etc etc).