Exam Inleiding Topologie, 30/1-2017, 13:30 - 16:30
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Let a < b,d’ < b' and x € R be real numbers such that x € [a,b) N [d’,b"). Then
d’ := max(a,a’) < x and b” := min(b,b’) > x. It follows that x € [d",b") C
la,b) N [d’,b'). This establishes the assertion.

It is straightfoward to see that T is a bijection with inverse 7~!: y s p~ly—q/p.
Thus we see that the pre-image of an interval of the form [a,b) equals

Tﬁl([a7b)> = [a/7b/)a

withd =a/p—q/pand b’ =b/p —q/p. Thus, T~!([a,b)) € F]. Since the sets
[a,b) form a basis of .7 we see that T is continuous. Since T~! is of similar
type, we see that T~ is continuous as well. Hence, T is a homeomorphism.

We first observe that

1
O.10=U [.1).
n>1
Thus, (0, 1) is a union of sets from .7;. By applying item (b), we find that every
set of the form (¢,q + p) with p,q € R and p > 0 belongs to .7;. Since the sets
(¢,q + p) form a basis of the topology for J4c1, the inclusion follows.

Let x,y € R, x # y. Since (R, Zeyc1) is (metrizable hence) Hausdorff, there exist
U,V € Jeyer such that U 5 x, V> yand UNV = 0. By (c) we have U,V € 7.
Hence, (R, .7) is Hausdorff.

The identity map 7 : R — R is continuous (R, .7}) — (R, Zayuc1) and maps S to S.
Thus, if S is compact in (R, .77) then its image S under / is compact in (R, Zyc1).

Alternative solution: Assume that S is compact with respect to .7;. Let {U,}ies
be an open cover of S with sets from .Z,.. By the previous item, each set U;
belongs to 7}, so that {U;};c; is an open cover of S relative to .7]. Since S is
compact relative to .7; the cover contains a finite subcover. Hence, S is compact
relative to gl

We observe that [a,0) = U,~[a,n) belongs to .7; hence its complement (—oo,a)
is closed in (R,.7}) and it follows that S N (—e,a) is closed in S, relative to
(the restriction of) .7}. Since S is compact for .7}, it follows that SN (—e,a) is
compact for .7].

The set [0,1) = [0, 1]N(—oo, 1) is closed in [0, 1], relative to the topology induced
by 7}, by item (f). If [0, 1] were compact for .77, then [0,1) = [0,1] N (—co, 1)
would be compact for .7} by hence also for Zy1, by (e). This is a contradiction,
since all compact subsets of (R, Z) are closed in (R, Zyc). It follows that
[0, 1] is not compact for .7}.



(h)

Assume (R, .7]) were locally compact. Then there would be a compact neighbor-
hood N of 0 relative to .7;. Now N would contain a set of the form [0,20) € .7,
for 6 > 0. Hence N D [0, 8]. The set [0, ] is closed in (R, Z¢y1) hence in (R, .7]),
by (c). It follows that [0, 8] is closed in N relative to the restriction of .7, hence
compact. This contradicts the conclusion of the previous item, in view of (b).

Solution 2.

(a)

(b)

(c)

By definition, Y is the collection of sets I'x, for x € R. Furthermore, 7 : R — Y
is given by w(x) =Tx. Now I'-0 = {0}, - (—1) = (—0,0) and I"- 1 = (0, 00).
The unit of these sets is R. Thus, we see that R splits into 3 I'-orbits, namely the
ones containing —1,0, 1. These orbits are precisely the points a,b and cin Y.

A set S C Y is open for the quotient topology if and only if 771(S) is open.
Now 7(S) is the union of the fibers 7~!(y), for y € Y. The fibers are: 7~ !(a) =
[ (—1)=(—,0) 7' () =T-0={0} and 7' (¢c) =T 1 = (0,0). From this
we see that
Ty 0 {0,7, {a}, {c},{a,c}}.

If U € Jy contains b, then £~ (U) must contain 0. For it to be a union of the
fibers and open in R, it needs to contain R. Hence, U =Y. It follows that the
inclusion D is an equality.

The space Y is not Hausdorff. Indeed, the only set from .7y containing b is Y.
Thus, every neighborhood of b contains Y and we see that this topology is not
Hausdorff.

By definition the map 7 is continuous. Since R is connected, and 7 surjective, it
follows that Y is connected.

Alternative approach: One may use the description under (b) as follows. Let
U,V € Jy andassume Y = U UV, UNV = 0. Without loss of generality we may
assume that b € U. Then U =Y which forces V = 0. Hence, Y is connected for
the quotient topology.

Since Y is finite, every open cover of Y is already finite, hence Y is compact.

Solution 3.

(a)

(b)

Assume (1). Then without loss of generality we may assume that X is compact.
Since X is Hausdorff, X; is closed in X ™. Thus, X\ X; is open in X and
contains X hence is non-empty. Also, Xj is open in Xt and non-empty. We find
that X is the disjoint union of two open non-empty subsets X; and X \ X,
hence not-connected.

It follows from the assumption that U N X; is both open and closed in X;. As U
is the union of these intersections, one of them is non-empty. Without loss of
generality we may assume that U N X # 0. Now X is the disjoint union of the
open subsets U N X; and X; \ (U NX;). By connectedness of X;, the second set
must be empty, hence U N X; = X1, so that X; C U.
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Assume (2). Then there exist non-empty open sets U,V C X+ which are disjoint
and such that UUV = X, As U,V are each other’s complement, they are closed
in Xt as well. Hence they are also compact.

Without loss of generality we may assume that oo € V so that U = X\ V is
a subset of X. Since the topology on X is induced by the topology on X, it
follows that U is open, closed and compact in X. By item (b) we may assume
that X is contained in U. Since U is compact and X closed in U it follows that
X is compact.

Let X := (—2,—1)U(0,1), equipped with the restriction topology of the Eu-
clidean topology on R. Since X is the disjoint union of two non-empty open
subsets, it is not connected. Thus X; = (—2,—1) and X, = (0, 1) are as in the
above, and non-compact. It follows that X is connected.

Solution 4.
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(c)
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Since X is a subspace of a Hausdorff space, it is Hausdorff. As X is the union of
the two closed and bounded subsets D x {—1} and D x {+1}, the set X is closed
and bounded in R3, hence compact.

We note that ||@(x,21)|> = ||x||> + (1 — ||x||>) = 1, hence ¢ maps into the unit
sphere. If y is a point of the unit sphere, we may write y = (x,7), with x € R?
and ¢ € R and then ||x|> +2 = ||y||> = 1 so that ||x||> < 1 and > = (1 — ||x||?).
It follows that x € D and r = /1 — ||x||?>. Hence y = @(x, £1). This shows that
@ is surjective.

If f and g belong to A, then (f+g)(x,—1) = f(x,—1)+g(x,—1) = f(x,1)+
g(x,1) = (fg)(x,1) for all x € dD. Hence f + g € A. Similarly one shows that
fe€A If AL eRand f € Athen forx € dD we have A f(x,—1) = Af(x,—1) =
Af(x,1) = (Af)(x,1) and we see that A f € A. Finally, the constant function 1
belongs to A. It follows that A is a unital subalgebra.

We will determine the fibers ¢ ~!(y) of the map ¢. First, let y = (x,7) be a point
of the unit sphere with # # 0. Then it follows from the reasoning in (b) that
(x,sign(t).1) is the unique element in the fiber ¢ ~!(y). Next, let y = (x,#) be in
the unit sphere and assume that # = 0. Then it follows that ||x|| =1 and ¢ = 0,
and we see that @(x',n) = (x,0) if and only if X = x and n € {—1,1}, hence
@~ !(y) consists of the points (x,=+1).

It follows from the above that A is precisely the algebra of continuous functions
f : X — R which are constant on the fibers of ¢. It follows that ¢* : f — fo@
is a bijection from C(S?) onto A. This bijection is an isomorphism of algebras.
Thus, the algebras A and C(S?) are isomorphic and from this we infer that the
topological spectrum X, is homeomorphic to the topological spectrum of C(S?).
By the Gelfand-Naimark theorem, the latter is homeomorphic to S2. Thus, X4 is
homeomorphic to S2.



