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Solution 1

(a)

(b)

(c)

(d)

If U € .7 and ¢ € R the pre-image T, !(U) belongs to .7 by continuity of 7.
The pre-image is the set of x € R such that x+ ¢ € U, which equals U + (—c).
Thus, if we take ¢ = —a we see that U +a € 7.

If U € 7 then also the set %U =V~1(U) belongs to .7. By applying this repeat-
edly to the set [0,1) we see that [0,27") € .7 for every n € N. By applying (a)
we now find that [a,a+27") € J foralla € Rand n € N.

Each set [a,a+ 1) belongs to A, so U% = R. Assume B|,B, € & and x €
B N B;. We will show that there exists By € 4 such that x € B3 C Bj N B,. Itis
easily seen that B; N B; is either empty or a set of the form [a,b), with a < b. Let
X € [a,D). Then there exists n € N such that x+27" < b. Put B3 := [x,x+27"),
then it is clear that B3 satisfies all assertions.

Let .7 be the topology generated by #. Then % C 7. On the other hand, if
B € 2 then it is readily verified that V='(B) €  and T, '(B) =B—c € &
for all ¢ € R. Hence, V and T, are continuous for .%. Also, [0,1) € D, so P
satisfies the properties (1), (2), (3). Since .7 is the smallest topology with this
property, it follows that 9 = 7.

Solution 2

(a)

(b)

(c)

(d)

Let x = (z,¢) € S x J. The orbit I'x consists of the points (z,7) and (—z,—t). Since
llz|| =1, z# —z, so (z,t) and (—z, —t) are distinct points.

Let & € X/T" and let (z, 7) be in the fiber of . By replacing (z, ) with (—z,—7)
if necessary, we see that (z,7) can be found with z; > 0. It follows that there
exists @ € [0, 7] such that z = (cos@,sin@). Take s = ¢/mw and r = (7+1)/2,
then 0 < s,r <1 and o(s,t) = p(z,7) = . Hence o is surjective.

Since o is constant on the classes of ~ there is a unique map & : [0,1]?/ ~—
X /T such that 60q = o. Clearly, & is bijective and continuous. Since [0, 1]? is
compact, and ¢ continuous, [0, 1]2/ ~ is compact. Since X is Hausdorff, and I’
finite, X /T" is Hausdorff. It follows that & is an embedding. As & is surjective,
it is a homeomorphism.

Assertion (1) is incorrect, assertion (2) is correct.



Solution 4

(a)

(b)

(©)

(d)

First assume that f is locally constant and let z € Z. If y € f~!({z}) then there
exists an open neighborhood U of y such that f is constant on U hence f =
f(y) =z on U, so that U C f~1({z}). It follows that every point of the fiber
£ '({z}) is interior, hence the fiber is open.

Conversely, assume every fiber is open, and let y € Y. Put z = f(y) and U :=
f~'({z}). Then U is open and contains y. Furthermore, f is constant on U. We
see that f is locally constant.

First assume that f is locally constant. Let V C Z be any subset. Then f~!(V)
is the union of the fibers f~!({z}), for z € V. All fibers are open by (a), hence
f~Y(V) is open. It follows that f is continuous.

Conversely, assume that f is continuous for the discrete topology on Z. Then for
every z € Z the set {z} is open for the discrete topology, hence f~!({z}) is open.
It follows from (a) that f is locally constant.

By (b), we know that f is continuous for the discrete topology on Z. It follows
that f(Y) is connected for the induced topology on f(Y), which is the discrete
topology. If z € f(Y) then {z} and f(Y)\ {z} are disjoint open subsets of f(Y),
and we see that one of them must be empty. Hence f(Y) = {z} and we see that
f is constant.

Alternative reasoning: Let Y be connected, and f : Y — Z locally constant. If
Y = 0, there is nothing to prove. Select y € Y and put z := f(y). Then the fiber
Uy := f~!(z) is open by (a) and contains y hence is not empty. Its complement
U, in Y equals f~!(Z\ {z}) which is open by (b). From the connectedness of ¥
we conclude that U, = 0. Hence U} =Y and we see that f(Y) = {z}, hence, f is
constant.

Assume that Y is not connected. Then Y = U UV for certain disjoint non-empty
open subsets U and V of Y. We take Z = {0, 1} and define f(y) =0if y € U and
f(y) =1fory € V. Then clearly, f is locally constant, but not constant.

Solution 3

(a)

(b)

For every a € X there exists an open neighborhood U, and a constant m, > 0
such that f;, > m, on U,.

The U,, for a € X, cover X. By compactness there exists a finite collection
ai,...,a, of points of X such that X C U;?:] Ug;- It follows that f > min; <<, Mg,
on each of the sets U; hence on X. Hence, (a) is valid, with my := min; <<, Mg,

For every x € X there exists an open neighborhood U, of x in X and a constant
my > 0 such that f > m, on Uy. The open sets Uy, for x € X, form an open



(c)

covering of X. By paracompactness, this cover has a locally finite refinement,
{Vi | i € I'}. By definition of refinement, for every i € I there exists an x; € X
such that V; < U,,. It follows that f > m; := m,, on V;.

Let V;,m; be as above. Then there exists a partition of unity {n; | i € I} which
is subordinated to {V; | i € I}. Now 0 < 1; < 1 and 1; = 0 outside V;. Therefore,
n:f > m;n; on V; and on X \ V; hence on X. We now note that for every x € X we
have (with finitely many nonzero terms)

) =Y m(x)f(x) =Y mini(x).

i€l i€l
As the family {n; | i € I'} is locally finite, the sum

u 1=mei

is a locally finite sum of continuous functions, hence continuous. Since };1; =
1, we have u > 0 everywhere. Hence u is a continuous function X — (0,0) and
we have shown that f > u on X.





