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Solution 1
(a) If U ∈ T and c ∈ R the pre-image T−1

c (U) belongs to T by continuity of Tc.
The pre-image is the set of x ∈ R such that x+ c ∈U, which equals U +(−c).
Thus, if we take c =−a we see that U +a ∈T .

(b) If U ∈T then also the set 1
2U =V−1(U) belongs to T . By applying this repeat-

edly to the set [0,1) we see that [0,2−n) ∈ T for every n ∈ N. By applying (a)
we now find that [a,a+2−n) ∈T for all a ∈ R and n ∈ N.

(c) Each set [a,a + 1) belongs to B, so ∪B = R. Assume B1,B2 ∈ B and x ∈
B1∩B2. We will show that there exists B3 ∈B such that x ∈ B3 ⊂ B1∩B2. It is
easily seen that B1∩B2 is either empty or a set of the form [a,b), with a < b. Let
x ∈ [a,b). Then there exists n ∈ N such that x+2−n < b. Put B3 := [x,x+2−n),
then it is clear that B3 satisfies all assertions.

(d) Let T0 be the topology generated by B. Then T0 ⊂ T . On the other hand, if
B ∈ B then it is readily verified that V−1(B) ∈ B and T−1

c (B) = B− c ∈ B
for all c ∈ R. Hence, V and Tc are continuous for T0. Also, [0,1) ∈ T0, so T0
satisfies the properties (1), (2), (3). Since T is the smallest topology with this
property, it follows that T0 = T .

Solution 2
(a) Let x= (z, t)∈ S×J. The orbit Γx consists of the points (z, t) and (−z,−t). Since
‖z‖= 1, z 6=−z, so (z, t) and (−z,−t) are distinct points.

(b) Let ξ ∈ X/Γ and let (z,τ) be in the fiber of ξ . By replacing (z,τ) with (−z,−τ)
if necessary, we see that (z,τ) can be found with z2 ≥ 0. It follows that there
exists ϕ ∈ [0,π] such that z = (cosϕ,sinϕ). Take s = ϕ/π and t = (τ + 1)/2,
then 0≤ s, t ≤ 1 and σ(s, t) = p(z,τ) = ξ . Hence σ is surjective.

(c) Since σ is constant on the classes of ∼ there is a unique map σ̄ : [0,1]2/ ∼→
X/Γ such that σ̄ ◦q = σ . Clearly, σ̄ is bijective and continuous. Since [0,1]2 is
compact, and q continuous, [0,1]2/ ∼ is compact. Since X is Hausdorff, and Γ

finite, X/Γ is Hausdorff. It follows that σ̄ is an embedding. As σ̄ is surjective,
it is a homeomorphism.

(d) Assertion (1) is incorrect, assertion (2) is correct.
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Solution 4
(a) First assume that f is locally constant and let z ∈ Z. If y ∈ f−1({z}) then there

exists an open neighborhood U of y such that f is constant on U hence f =
f (y) = z on U , so that U ⊂ f−1({z}). It follows that every point of the fiber
f−1({z}) is interior, hence the fiber is open.

Conversely, assume every fiber is open, and let y ∈ Y. Put z = f (y) and U :=
f−1({z}). Then U is open and contains y. Furthermore, f is constant on U. We
see that f is locally constant.

(b) First assume that f is locally constant. Let V ⊂ Z be any subset. Then f−1(V )
is the union of the fibers f−1({z}), for z ∈ V. All fibers are open by (a), hence
f−1(V ) is open. It follows that f is continuous.

Conversely, assume that f is continuous for the discrete topology on Z. Then for
every z∈ Z the set {z} is open for the discrete topology, hence f−1({z}) is open.
It follows from (a) that f is locally constant.

(c) By (b), we know that f is continuous for the discrete topology on Z. It follows
that f (Y ) is connected for the induced topology on f (Y ), which is the discrete
topology. If z ∈ f (Y ) then {z} and f (Y )\{z} are disjoint open subsets of f (Y ),
and we see that one of them must be empty. Hence f (Y ) = {z} and we see that
f is constant.

Alternative reasoning: Let Y be connected, and f : Y → Z locally constant. If
Y = /0, there is nothing to prove. Select y ∈ Y and put z := f (y). Then the fiber
U1 := f−1(z) is open by (a) and contains y hence is not empty. Its complement
U2 in Y equals f−1(Z \{z}) which is open by (b). From the connectedness of Y
we conclude that U2 = /0. Hence U1 =Y and we see that f (Y ) = {z}, hence, f is
constant.

(d) Assume that Y is not connected. Then Y =U ∪V for certain disjoint non-empty
open subsets U and V of Y. We take Z = {0,1} and define f (y) = 0 if y ∈U and
f (y) = 1 for y ∈V. Then clearly, f is locally constant, but not constant.

Solution 3
(a) For every a ∈ X there exists an open neighborhood Ua and a constant ma > 0

such that fa ≥ ma on Ua.

The Ua, for a ∈ X , cover X . By compactness there exists a finite collection
a1, . . . ,an of points of X such that X ⊂∪n

j=1Ua j . It follows that f ≥min1≤ j≤n ma j

on each of the sets Ui hence on X . Hence, (a) is valid, with mX := min1≤ j≤n ma j .

(b) For every x ∈ X there exists an open neighborhood Ux of x in X and a constant
mx > 0 such that f ≥ mx on Ux. The open sets Ux, for x ∈ X , form an open
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covering of X . By paracompactness, this cover has a locally finite refinement,
{Vi | i ∈ I}. By definition of refinement, for every i ∈ I there exists an xi ∈ X
such that Vi ≤Uxi. It follows that f ≥ mi := mxi on Vi.

(c) Let Vi,mi be as above. Then there exists a partition of unity {ηi | i ∈ I} which
is subordinated to {Vi | i ∈ I}. Now 0≤ ηi ≤ 1 and ηi = 0 outside Vi. Therefore,
ηi f ≥miηi on Vi and on X \Vi hence on X . We now note that for every x ∈ X we
have (with finitely many nonzero terms)

f (x) = ∑
i∈I

ηi(x) f (x)≥∑
i∈I

miηi(x).

As the family {ηi | i ∈ I} is locally finite, the sum

µ := ∑
i

miηi

is a locally finite sum of continuous functions, hence continuous. Since ∑i ηi =
1, we have µ > 0 everywhere. Hence µ is a continuous function X→ (0,∞) and
we have shown that f ≥ µ on X .
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