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Solution to 1

(a) Let By,B; € A. 1If one of By, B, equals R, then obviously B N By € %. Assume
that By, B; are not equal to R. Then B; = [nj,a;), with ny,ny € Z and ay,a; €
R. It is now readily seen that B; N B, = [n,b) with n = max(mj,my) and b =
min(aj,ay). Hence B N B, € Z. This shows that 4 is a topology basis. Since
Um<o[m,0) = (—e0,0) ¢ A, we see that A is not closed under unions. It follows
that 4 is not a topology.

(b) LetU € .7 contain 5. Then there exists [m,a) € % with § € [m,a) C U. We must
have m < 0 and a > 3, hence [0,a) C U. In particular, 0 € U. It follows that 0
and % cannot be separated by open neighborhoods. Hence, .7 is not Hausdorff.

(c) The subset %y C A consisting of all intervals [m,q) with m € Z and g € Q is
countable. Moreover, if a > 0 then [m,a) = Uye,g<a[m. q), s0 Py is a countable
basis for .7. It follows that .7 is second countable.

(d) A non-empty basis element [m,a) € £ is contained in A if and only if m > 0 and
a< % The latter is equivalent to m = 0 and a < % The union of these sets is

Int(A) = [0, 7).

The condition x ¢ A is equivalent to the existence of m € Z and a € R with
x € [m,a) and [m,a) NA = 0. The latter condition forces m > 1 or a < —% and
we see that x ¢ A implies x € [1,00) or x € (—oo, —1). Conversely, if x € [1,)
orx e (—00,—%) then either x € [1,a) fora > 1 or x € [m,—%) form < —1.In
both cases, there exist m € Z and a € R such that x € [m,a) and [m,a) NA = 0.
We conclude that A equals the complement of [1,0) U (—oo, —%) which equals

[_%71)'

(e) Assume that 0 < r < 1. Any open subset U of [0, r] containing r must contain
a subset of the form [0, 7] N [m,a), for m < r < a. The latter implies m < 0 and
a > r hence [0,r] C [0,r]N]0,a) C U hence U = [0,r|. This implies that [0, 7]
cannot be written as the union of two disjoint non-empty open subsets. Hence
[0, 7] is connected.

Now assume that r > 1. Then [1,r] = [0,r] N [1,r+ 1) hence [1,r] is open and
non-empty in [0, r]. Obviously, [0, 1) is open and non-empty in [0, 7] and [0, r] is
the disjoint union of [0, 1) and [1, r]. It follows that [0, r] is not connected.



Solution to 2

(a)

(b)

We assume that both X and Y are Hausdorff. Let a,b € X x Y be two points such
that a # b. Write a = (ay,a;) and b = (by,b;), then we may as well assume that
a1 # b;. By the Hausdorff property of X there exist open subsets U,V C X such
thata; €e U,ap € Vand UNV =0. Now U xY and V X Y are open subsets of
X x Y containing a and b respectively, and

UxYNVxY=(UNV)xY =0.

It follows that the product is Hausdorff.

For the converse, assume that X x Y is Hausdorff. Let a;,b; € X be distinct
points. Select a point y € Y then (aj,y) and (by,y) are distinct points in X x Y.
By the Hausdorff property, there exist open subsets Wi, W, in X X Y such that
(a1,y) € Wy, (by,y) € W and Wy "W, = 0. Since W is open, there exists an
open subset U; 3 a; of X such that U; x {y} C W;. Likewise, there exists an
open subset U, > by of X such that U, x {y} C W,. We now observe that

(UlﬂUz) x{y}=U1 x{y}ﬂsz{y} CWinW, =0.

It follows that Uy N U, = 0. We conclude that ay,b; are separated in X. Hence,
X is Hausdorff. In a similar way, it follows that Y is Hausdorff.

Solution to 3

1.

We first show that ‘(2) = (1)’. Let g : [0,0) — R be a continuous function such
that f < g. Leta € X. Let U = g~ !((—o0,g(a) +1)). Then by continuity of g
it follows that U is open. Clearly a € U. Furthermore, g < g(a)+1 on U. It
follows that f <M on U, with M = g(a) + 1.

We now address the converse implication ‘(1) = (2)’. Assume that f is locally
bounded. Since X is locally compact Hausdorff and second countable, it is para-
compact.

For every a € X there exists an open neighborhood V,, of a such that f is bounded
on V, by a suitable constant M, > 0. Let ¥ be a collection of such open neigh-
borhoods V,, fora € X.

First reasoning. Then by paracompactness, ¥ has a locally finite refinement
% = {U; | i€ I}. For every i € I the neighborhood U; is contained in a neigh-
borhood V,(;) for a suitable a(i) € X, hence f is bounded by M,;) > 0 on the
neighborhood U;.

Again by paracompactness, there exists a partition of unity {n, | i € I}, with
suppn; C U; for all i € I. The function M,;) n; is continuous and has support
contained in U;.



Second reasoning. By paracompactness, there exists a partition of unity {7); |
i € I} which is subordinated to #". Thus, for every i € I there exists a Vaiy €V
such that suppn; C V,;). It follows that the function f is on V, ;) bounded by a
constant M, ;) > 0. The function M, ;) 1; is continuous and has support contained

in supp(1;).
From both reasonings given above, it follows that for all i, we have f1; < M,;n;

on supp(7;) hence on X. Furthermore, the sum g := Y; M,(;) n; is a locally finite
sum of continuous functions, hence continuous.

Finally, for x € X we have
) =Y F)mi(x) <Y Mypmi(x) = g(x).
icl icl
Solution to 4
(a) For y;,» €1 we have

Py = (Qnp, Byp) = (O Oy By By) = Py Pyss

and p; = (a1, B1) = (idg1,idg1 ) =idgi, ¢1. Therefore, p defines an action of I" on
S! x S!. For a given 7y the maps Oy, By : S — S! are continuous, hence so is py=
(ay,By) : St x S — S! x S It follows that p is an action by homeomorphisms
onS! x S'.

(b) Let p = (x,y). Then the orbit I'p consists of 1p = p = (x,y) and gp = (—x, —y1,¥2).

Since x = —x, each orbit consists of precisely two points.

(c) It is obvious that f is continuous. We claim that f is injective. Indeed, let
f(s,y) = f(s',y'), for (s,y), (s",y") €[0,1] x S'. Then y =y’ and cos st = coss'®
and sinsm = sins’7. Since 7s € [0, 7], the latter two conditions imply that s = s’.
Hence, f is injective. Finally, since [0, 1] x S! is compact and S' x S! Hausdorff,
it follows that f is a topological embedding.

(d) Letz € S' x S'/T" and select (x,y) € S' x S! such that 7(x,y) = z. We note that
x = (cos s, sin7s) for a unique s € [0,2).

If s € [0,1] then 7t(x,y) = F(s,y) and we are done.
If s > 1, then —x = (cosz(s— 1),sinm(s — 1)) hence

n(x,y) = w(g(x,y)) = B(=x,Bey) = 7f(s = 1,Bey) = F (s — 1, By).
Since (s —1,y) € [0,1] x S, we see that F is surjective.

(e) We observe that the map F induces an injective map F : [0,1] x §'/ ~— ST x
S'/T such that Fopr = F. Here pr: [0,1] x ' — [0,1] x S!/ ~ is the canonical



®

€9

projection. We claim that F' is a homeomorphism from [0, 1] x S'/ ~ onto S! x
S!/T. Since F is surjective, F is bijective.

Now S! x §'/T" is the quotient of a Hausdorff space by a finite group action,
hence a Hausdorff space. Since [0, 1] x S is the product of two compact spaces,

it is compact. Therefore, the bijective continuous map F : [0,1] x '/ ~ —
S! x §1/T" is a homeomorphism.

Since
F(lay):ﬂ‘-(_l’ovy):ﬂ(hovﬁgy):F(O?ﬁgy) (*)

we see that the surjectivity of F implies that F maps [0,1) x S onto S' x §!/T".
We will now show that F is injective on [0,1) x S'. If 5,5’ € [0,1),y,y’ € S and
F(s,y) = F(s',y’) then it follows that (cos7s’,sinzs’,y’) = y(cos @s,sin7s,y)
with either Yy =1 or Yy = g. Assume the latter. Then

(coss',sins") = atg(cos s, sin7ws) = (—cos s, — sin 7s).
Since sin7ts > 0 and sin s’ > 0 this implies sin s = sin 7s’ = 0 hence s = 0 = 5’
and then cos s’ = 1 = cos s, contradiction.
We thus see that y = 1 hence (coszs’,sin7ms’,y’) = (cosms,sinms,y). Hence,

s = and y =y’ and the injectivity follows.

‘We will now describe the fibers of F. From (*) we obtain that

F(1,y) =F(0,Bgy).

so that the fiber of F(1,y) contains (0,,y) and (1,y). Since F is injective on
[0,1) x S, we see that the fiber of F(1,y) cannot contain any other point. Again
by injectivity of F on [0, 1) it follows that the fiber of F(s,y) for s ¢ {0,1} can
only contain the point (s,y).

We see that for two distinct points (s,y), (s',y") with s < s’ we have (s,y) ~ (s',))
ifand only if s =0, s’ =1 and y = Bgy = (—y1,y2).

From this it is clear that [0,1] x !/ ~ equipped with the quotient topology is
homeomorphic to the Klein bottle.

In particular, it follows that S! x S! /T is homeomorphic to the Klein bottle.



