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Below you find the solutions. What I write here is rather short, but contains all the
crucial points. I apologize for the lack of graphics.

Problem 1 (5 points). Consider the equivalence relation ~ on R, where x ~ y iff x and y
are both positive or both negative or both zero. Let X = R/ ~ with the quotient topology.
List (with proof) all closed subsets of X .

The space X has only three points, which we call —, 0 and +. The closed sets are &,
{0}, {—,0}, {0,4+} and X. Indeed, by definition of the quotient topology a set in X is open
if and only if its preimage in R is open. Thus our claim is that the preimage of A C X
in R is open if and only if A is X, {+,—}, {+}, {—} or @. This is easy to check in each
single case, e.g. the preimage of {—} is (—o0,0), which is open and the preimage of {0, +}
is [0, 00), which is not open.

Problem 2 (10 points). Let (X,Tx) and (Y, Ty) be topological spaces and f: X — Y a
function. Let further (Cy)ier be a cover of X by closed subsets C; C X, i.e. |J;c; Ci = X.
Assume that f|o,: C; — Y is a continuous function for each i € I, where we equip C; with
the subspace topology.

(a) Give an example of XY, f and (C;)icr as above, where f is not continuous.
(b) Show that f is necessarily continuous if the indexing set I is finite.

For part a: Let f: X — Y be any non-continuous function, I = X and C; = {i}. As
every function from a point is continuous, this fulfills the conditions. E.g. take f: R — R,
with f(x) =0if x <0 and 1 else.

For part b: We have seen that a function f: X — Y is continuous if and only if f=1(A)
is closed for every closed subset A C Y. Let A C Y be closed. Then P, = (f|c,) " 1(4) is
closed in C; and thus closed in X. (Indeed, by definition there exists an open U; C X with
UiNC; =C; \ P;. Thus, (X \ U;) N C; = P;, which is thus the intersection of two closed
subsets and thus closed.) Clearly, f~!(A) = (J;c; P, which is closed since finite unions of
closed subsets are closed.

Problem 3 (6 points). Let X = C([0,1],R) be the set of all continuous functions from [0, 1]
to R. We consider on it the topology induced by the metric d(f, g) = max,c(o1) |f(z) —g(x)].
Show that X is path-connected.



Let f,g € X. We want to show that they can be connected by a path. We assume
f # g as the other case is obvious. Define v: [0,1] = X by y(¢): s — tf(s) + (1 — t)g(s).
It remains to show that v is continuous. We have

ltof(s) + (1 —to)g(s) —t1f(s) = (L= t1)g(s)| = [(to — t1) f(s) + (t1 — t0)g(s)]
= [to = ta[[f(s) — g(s)]

Thus d(v(to),v(t1)) = |to — t1]d(f, g). We see that for e > 0 and |ty — t1] < 6 = ﬁ, we
obtain indeed d(v(to),v(t1)) < e.

Problem 4 (6 points). Give evamples i,5: S' — T of embeddings of the circle into the
torus such that T \ i(S1) is not homeomorphic to T \ j(S*).

We view T as the quotient of the unit square @ = [0,1]? by the usual equivalence
relation with quotient map p: Q@ — 7. Let i': S' — @ the embedding as the circle of
radius % around (%, %) and ¢ = pi’. This is clearly injective and hence an embedding (as we
are between compact Hausdorff spaces). Let j: S! — T be induced by the map

[0,1] = Q, t—(t,0).

This is an embedding for the same reason.

We claim that 7'\ i(S') is disconnected. Indeed, p is closed (since it is a map between
compact Hausdorff spaces) and thus also open since it is surjective. Let U be the open ball
of radius 1 around (3, 3) and let V be the complement of its closure in Q. Then p(U) and
p(V) are non-empty open disjoint subsets of T that cover T\ i(S').

We claim that 7'\ j(S!) is connected. Indeed, it is a quotient of (0,1) x [0, 1], which is
connected.

Thus the two complements cannot be homeomorphic.

Problem 5 (10 points). (a) Consider the open coverU = {(—2,1),(—1,2)} of the interval
(=2, 2) with the Fuclidean topology. Give an example of a partition of unity subordinate
toU.

(b) Let X = {x,y} be a set with two elements. Give an example of a topology on X such
that every open cover' has a subordinate partition of unity, but the topology is not

Hausdorff.

1 if 2(—2,-3)
Part a: Let n(x) = %—x ifxe[—%,%].
0 if z € (3,2)
Set ne = 1 —n1. The supports of n; and 7 are (—2, %] and [—%, 2).

Part b: We take the indiscrete topology on X. This is not Hausdorff as the only
neighborhood of = is X, containing y. The two possible open covers are {X} and {X, @}.
In the first case the function 17 = 1 defines a subordinate partition of unity. In the second
case take m = 1 and 12 = 0.

'For simplicity, you are allowed to assume that no open set occurs twice in the open cover.



Problem 6 (13 points). Let p,q € S? be the points (1,0,0) and (—1,0,0). Let X =
S2/{p,q} with the quotient topology.

(a) Show that X is not a 2-dimensional manifold.

(b) Show that S?\ {p,q} is not homeomorphic to R?. (Hint: Use one-point compactifica-
tions.)

Part a: Denote by [p] € X the image of p € S?. Note that the restriction of the quotient
map 7: S? — X defines a homeomorphism S2\ {p, ¢} — X \ {[p]}.

Suppose that X is a 2-dimensional manifold. Then there exists an open neighborhood
U around [p] together with a homeomorphism ¢: U — R%. Set U, = ¢! (Ba(([p]), 2)).
Then U, \ {[p]} is path-connected. Indeed: this is homeomorphic to B4(0,2)\ {0}. Every
point in it can be connected by a straight line with (0, 5-) or with (0, —5-) and these two
can be connected by a semicircle.

Let Vi = {(z,y,2) € S? : # > 0} and V_ = {(z,y,2) € S? : * < 0}. Since the set
(Ve U V) is open, we must have 771 (U,) € V. UV_ for some n. Since 7~!(U,) is an
open neighborhood of {p,q}, it must intersect both V, and V_ non-trivially. But then
71U\ {[p]}) N V4 and 7= (U, \ {[p]}) N V_ form a cover by non-empty open disjoint sets,
showing that 7=(U, \ {[p]}) and hence U, \ {[p]} is disconnected, in contradiction with
what we showed above.

Part b: Suppose that S? \ {p,q} and R? are homeomorphic. Then also their one-point
compactifications A and B are homeomorphic. We have seen in class that B = S? hence
it is a 2-dimensional manifold. We claim that A = S2?/{p,q}. Using part a we see that A
is not a 2-dimensional manifold and thus A and B cannot be homeomorphic.

Our claim follows by checking the following points:
e X =52/{p,q} is compact (as a quotient of a compact space)

e X is Hausdorff: since S? is Hausdorff and normal, we can for any x # p, ¢ find disjoint
open neighborhoods U around x and V' around {p, ¢}; their images are disjoint open
neighborhoods around [z] and [p]. Separating two point x # y in X that are not [p]
is even easier.

e X\ {[p]} is homeomorphic to S%\ {p,q}

The one-point compactification is uniquely determined by these properties. (Cf. Theorem
4.40)



