Complex analysis - Mock Exam

Notes:

- 1. Write your name and student number **clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books, the lecture's slides and your own notes.
- 5. You are **not** allowed to consult colleagues, calculators, or use the internet to assist you solve exam questions.
- 6. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Questions

Exercise 1. Let $a_1, \ldots, a_n \in \mathbb{C}$ be a collection of complex numbers of norm 1. Show that there is a point inside the unit disc such that $\prod_{i=1}^{n} |z - a_n| > 1$.

Exercise 2. Let f be analytic on a closed disc \bar{D} of radius b>0, centered at z_0 .

• Show that the value of f at z_0 can be computed as either of the following two averages:

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$
, where $0 < r < b$

$$f(z_0) = \frac{1}{\pi b^2} \int_D f(x+iy) dy dx.$$

• Is the converse true? That is, if a continuous function $f: U \to \mathbb{C}$ satisfies

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{i\theta}) d\theta,$$

for all $z \in U$ and all r such that $\bar{D}_r(z) \subset U$, is f holomorphic?

Exercise 3. Let $f: \mathbb{C} \to \mathbb{C}$ be the holomorphic function with singularities given by

$$f(z) = \frac{e^{-2\pi i z}}{z^3 + i}.$$

 \bullet Determine the singularities of f and for each of them, determine what type of singularity it is (removable, pole or essential).

- ullet Compute the residue of f at each of its singularities.
- Compute the integrals

$$\int_{-\infty}^{\infty} \frac{x^3 \cos 2\pi x - \sin 2\pi x}{x^6 + 1} dx.$$
$$\int_{-\infty}^{\infty} \frac{x^3 \sin 2\pi x - \cos 2\pi x}{x^6 + 1} dx.$$

Exercise 4. Consider the group homomorphism

$$\Phi \colon \mathrm{Sl}(2;\mathbb{C}) \to \mathrm{M\ddot{o}b}, \qquad \Phi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{az+b}{cz+d}.$$

- Show that if $v = (z_1, z_2)$ is an eigenvector of A, that is $Av = \lambda v$ for some $\lambda \in \mathbb{C}$, then $z = \frac{z_1}{z_2}$ is a fixed point for $\Phi(A)$.
- Show that if z is a fixed point for $\Phi(A)$, then (z,1) is an eigenvector for A.

Exercise 5. Let $u: \mathbb{C} \to \mathbb{R}$ be a harmonic function and $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Prove or disprove the following statements.

- $u \circ f$ is harmonic,
- $f \circ u$ is holomorphic.