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(1) Let (E,B, ν) be a measure space, and h : E → R a non-negative measurable function. Define a
measure µ on (E,B) by µ(A) =

∫
A

hdν for A ∈ B. Show that for every non-negative measurable
function F : E → R one has ∫

E

F dµ =
∫

E

Fh dν.

Conclude that the result is still true for F ∈ L1(µ) which is not necessarily non-negative. (Hint:
use a standard argument starting with indicator functions)

Proof Suppose first that F = 1A is the indicator function of some measurable set A ∈ B.
Then, ∫

E

F dµ = µ(A) =
∫

A

h dν =
∫

E

1Ahdν =
∫

E

Fhdν.

Suppose now that F =
n∑

k=1

αk1Ak
is a non-negative measurable step function. Then,

∫
E

F dµ =
n∑

k=1

αkµ(Ak) =
n∑

k=1

αk

∫
E

1Ahdν =
∫

E

n∑
k=1

αk1Ahdν =
∫

E

Fhdν.

Suppose that F is a non-negative measurable function, then there exists a sequence of non-
negative measurable step functions Fn such that Fn ↑ F. Then, Fnh ↑ Fh, and by Beppo-Levi,∫

E

F dµ = lim
n→∞

∫
E

Fn dµ = lim
n→∞

∫
E

Fnhdν =
∫

E

Fhdν.

Finally, suppose that F ∈ L1(µ). Since F+, F− are non-negative, we have∫
E

F+ dµ =
∫

E

F+h dν and
∫

E

F− dµ =
∫

E

F−h dν.

Since F ∈ L1(µ), from the above we see that Fh ∈ L1(ν), hence∫
E

F dµ =
∫

E

F+ dµ−
∫

E

F− dµ =
∫

E

F+h dν −
∫

E

F−h dν =
∫

E

Fh dν.

(2) Consider the measure space ((0,∞),B((0,∞), λ), where B((0,∞)) and λ are the restrictions of
the Borel σ-algebra and Lebesgue measure to the interval (0,∞). Show that

lim
n→∞

∫
(0,n)

(
1 +

x

n

)n

e−2x dλ(x) = 1.

(Hint: note that 1 + x ≤ ex).

Proof: Let un(x) = 1(0,n)

(
1 + x

n

)n
e−2x, then limn→∞ un(x) = 1(0,∞)e

−x. Using the fact that
1+x ≤ ex, we see that un(x) ≤ 1(0,∞)e

−x. Since the function e−x is positive, measurable and the
improper Riemann integrable on [0,∞) exists, it follows that it is Lebesgue integrable on [0,∞)
(and hence also on (0,∞)). By Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
(0,n)

(
1 +

x

n

)n

e−2x dλ(x) = lim
n→∞

∫
un(x)dλ(x)

=
∫

1(0,∞)e
−xdλ(x) =

∫ ∞

0

e−x dx = 1.
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(3) Let (X,A, µ) be a probability space (i.e. µ(X) = 1) and let {fn} be a sequence in L1(µ) such
that

∫
X
|fn|dµ = n for all n ≥ 1. Let

An = {x : |fn(x)−
∫

X

fndµ| ≥ n3}.

(a) Show that µ
(⋂

m≥1

⋃
n≥m An

)
= 0. (Hint: use Exercise 6.9 (Borel-Cantelli Lemma)).

(b) Use part (a) to show that for every ε > 0 there exists m0 ≥ 1 such that

µ{x ∈ X : |fn(x)| < n3 + n, for all n ≥ m0} > 1− ε.

Proof (a) By Markov Inequality we have

µ(An) ≤ 1
n3

∫
X

|fn(x)−
∫

X

fndµ| dµ ≤ 2n

n3
=

2
n2

.

Since
∞∑

n=1

µ(An) =
∞∑

n=1

2
n2

< ∞, it follows by Borel-Cantelli Lemma (Exercise 6.9) that

µ

 ⋂
m≥1

⋃
n≥m

An

 = 0.

Proof (b) By part (a) we have µ
(⋃

m≥1

⋂
n≥m Ac

n

)
= 1. By Theorem 4.4(iii),

lim
m→∞

µ

 ⋂
n≥m

Ac
n

 = µ

 ⋃
m≥1

⋂
n≥m

Ac
n

 = 1.

Hence, given ε > 0 there exists m0 ≥ 1 such that µ
(⋂

n≥m0
Ac

n

)
> 1− ε. But for x ∈

⋂
n≥m0

Ac
n

one has for n ≥ m0,

|fn(x)| − |
∫

fn dµ| ≤ |fn(x)−
∫

fn(x) dµ| < n3,

and thus, |fn(x)| < n3 + n. This implies that

µ{x ∈ X : |fn(x)| < n3 + n, for all n ≥ m0} ≥ µ

 ⋂
n≥m0

Ac
n

 > 1− ε.

(4) Let (X,A, µ) be a σ-finite measure space and (Ai) a sequence in A such that limn→∞ µ(An) = 0.
(a) Show that 1An

µ−→ 0, i.e. the sequence (1An
) converges to 0 in measure.

(b) Show that for any u ∈ L1(µ), one has u1An

µ−→ 0.
(c) Show that for any u ∈ L1(µ), one has

sup
n

∫
{|u|1An>|u|}

|u|1An dµ = 0.

(d) Show that limn→∞
∫

An
u dµ = 0.

Proof (a): For any 0 < ε < 1 and anyA ∈ A with µ(A) < ∞, we have

µ(A ∩ {1An
> ε}) = µ(A ∩An) ≤ µ(An).

Thus, lim supn→∞ µ(A ∩ {1An > ε}) = 0 and hence limn→∞ µ(A ∩ {1An > ε}) = 0. This implies
1An

µ−→ 0.

Proof (b): Let u ∈ L1(µ). For any ε > 0 and anyA ∈ A with µ(A) < ∞, one has

µ(A ∩ {|u|1An
> ε}) = µ(A ∩An ∩ {|u| > ε}) ≤ µ(An).

This shows that limn→∞ µ(A ∩ {|u|1An
> ε}) = 0, and hence u1An

µ−→ 0.
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Proof (c): Let u ∈ L1(µ). Note that |u|1An ≤ |u|, thus the set {|u|1An > |u|} is empty. By
Theorem 10.9(ii), we have ∫

{|u|1An>|u|}
|u|1An dµ = 0

for all n and hence supj

∫
{|u|1An>|u|} |u|1An dµ = 0.

Proof (d): By part (c) we see that the sequence (|u|1An) is uniformly integrable. Hence, by
part (b) and Vitali’s Theorem 16.6 we have

lim
n→∞

∫
|u|1An dµ = lim

n→∞
||u1An ||1 = 0.

Since
lim sup

n→∞
|
∫

u1An
dµ| ≤ lim sup

n→∞

∫
|u|1An

dµ = lim
n→∞

∫
|u|1An

dµ

the result follows.

(5) Let E = {(x, y) : 0 < x < ∞, 0 < y < 1}. We consider on E the restriction of the product Borel
σ-algebra, and the restriction of the product Lebesgue measure λ × λ. Let f : E → R be given
by f(x, y) = y sinx e−xy.
(a) Show that f is λ× λ integrable on E.
(b) Applying Fubini’s Theorem to the function f , show that∫ ∞

0

sinx

x

(
1− e−x

x
− e−x

)
dx =

1
2

log 2.

Proof (a) Notice that f is continuous, and hence measurable. Furthermore, |f(x, y)| ≤ ye−xy.
The fuction g(x, y) = ye−xy is non-negative measurable function, hence by Tonelli’s Theorem,∫

E

|f(x, y)|d(λ× λ)(x, y) ≤
∫

E

ye−xyd(λ× λ)(x, y)

=
∫ 1

0

∫ ∞

0

ye−xydxdy

=
∫ 1

0

1 dy = 1.

Notice that the integrands are Riemann integrable, hence the Riemann integral equals the
Lebesgue integral, also the second equality is obtained by integration by parts. This shows
that f is λ× λ integrable on E.

Proof (b) By Fubini’s Theorem,∫
E

f(x, y)d(λ× λ)(x, y) =
∫ 1

0

∫ ∞

0

y sinx e−xydxdy =
∫ ∞

0

∫ 1

0

y sinx e−xydydx.

Using integration by parts, one has∫ ∞

0

y sinx e−xydx =
y

y2 + 1
.

Hence, ∫
E

f(x, y)d(λ× λ)(x, y) =
∫ 1

0

y

y2 + 1
dy =

1
2

log 2.

On the other hand, again by integration by parts one has,∫ 1

0

y sinx e−xydy =
sinx

x

(
1− e−x

x
− e−x

)
.

Therefore, ∫ ∞

0

sinx

x

(
1− e−x

x
− e−x

)
dx =

1
2

log 2.


